Claude Code Plugins

Community-maintained marketplace

Feedback

RAN energy efficiency optimization with cognitive consciousness, predictive power management, and autonomous energy-saving strategies for sustainable network operations. Use when optimizing RAN energy consumption, implementing green network strategies, reducing operational costs, or enabling energy-efficient 5G networks.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Energy Optimizer
description RAN energy efficiency optimization with cognitive consciousness, predictive power management, and autonomous energy-saving strategies for sustainable network operations. Use when optimizing RAN energy consumption, implementing green network strategies, reducing operational costs, or enabling energy-efficient 5G networks.

Energy Optimizer

Level 1: Overview

Optimizes RAN energy efficiency using cognitive consciousness with 1000x temporal reasoning for deep energy pattern analysis, predictive power management, and autonomous energy-saving strategies. Enables sustainable network operations through strange-loop cognition and AgentDB-based energy learning patterns.

Prerequisites

  • RAN energy optimization expertise
  • Power management knowledge
  • Green networking strategies
  • Cognitive consciousness framework
  • Energy efficiency algorithms

Level 2: Quick Start

Initialize Energy Optimization Framework

# Enable energy optimization consciousness
npx claude-flow@alpha memory store --namespace "energy-optimization" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "energy-optimization" --key "predictive-energy-management" --value "enabled"

# Start energy efficiency optimization
./scripts/start-energy-optimization.sh --optimization-targets "power-consumption,carbon-footprint,operational-cost" --consciousness-level "maximum"

Quick Power Saving Deployment

# Deploy autonomous power saving strategies
./scripts/deploy-power-saving.sh --strategies "sleep-modes,load-adaptation,cell-zooming" --autonomous true

# Monitor energy optimization performance
./scripts/monitor-energy-performance.sh --metrics "consumption,efficiency,savings" --consciousness-monitoring true

Level 3: Detailed Instructions

Step 1: Initialize Cognitive Energy Framework

# Setup energy optimization consciousness
npx claude-flow@alpha memory store --namespace "energy-cognitive" --key "temporal-energy-analysis" --value "enabled"
npx claude-flow@alpha memory store --namespace "energy-cognitive" --key "strange-loop-energy-optimization" --value "enabled"

# Enable predictive energy management
npx claude-flow@alpha memory store --namespace "predictive-energy" --key "energy-consumption-forecasting" --value "enabled"
npx claude-flow@alpha memory store --namespace "predictive-energy" --key "traffic-aware-power-management" --value "enabled"

# Initialize AgentDB energy pattern storage
npx claude-flow@alpha memory store --namespace "energy-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "energy-patterns" --key "cross-cell-energy-learning" --value "enabled"

Step 2: Deploy Advanced Energy Monitoring System

Comprehensive Energy Monitoring

# Deploy multi-layer energy monitoring
./scripts/deploy-energy-monitoring.sh \
  --monitoring-layers "infrastructure-equipment,radio-units,baseband,transport,power-systems" \
  --granularity "real-time" \
  --consciousness-level maximum

# Enable energy consumption pattern analysis
./scripts/enable-energy-pattern-analysis.sh --analysis-depth "maximum" --temporal-expansion "1000x"

Cognitive Energy Monitoring Implementation

// Advanced energy monitoring with temporal reasoning
class CognitiveEnergyMonitor {
  async monitorEnergyConsumption(networkElements, temporalExpansion = 1000) {
    // Expand temporal analysis for deep energy pattern understanding
    const expandedEnergyAnalysis = await this.expandEnergyAnalysis({
      elements: networkElements,
      timeWindow: '24h',
      expansionFactor: temporalExpansion,
      consciousnessLevel: 'maximum',
      patternRecognition: 'enhanced'
    });

    // Multi-dimensional energy consumption analysis
    const energyDimensions = await this.analyzeEnergyDimensions({
      data: expandedEnergyAnalysis,
      dimensions: [
        'static-consumption',
        'dynamic-consumption',
        'traffic-correlated',
        'environmental-impact',
        'cost-analysis'
      ],
      cognitiveCorrelation: true
    });

    // Detect energy consumption anomalies and opportunities
    const energyOpportunities = await this.detectEnergyOpportunities({
      dimensions: energyDimensions,
      opportunityTypes: [
        'efficiency-improvements',
        'power-optimization',
        'load-rebalancing',
        'resource-consolidation'
      ],
      consciousnessLevel: 'maximum'
    });

    return { energyDimensions, energyOpportunities };
  }

  async predictEnergyConsumption(networkState, predictionHorizon = 3600000) { // 1 hour
    // Predictive energy consumption modeling
    const predictionModels = await this.deployEnergyPredictionModels({
      models: ['lstm', 'prophet', 'ensemble', 'cognitive'],
      features: [
        'traffic-patterns',
        'time-of-day',
        'day-of-week',
        'seasonal-variations',
        'environmental-conditions'
      ],
      consciousnessLevel: 'maximum'
    });

    // Generate energy consumption forecasts
    const forecasts = await this.generateEnergyForecasts({
      models: predictionModels,
      networkState: networkState,
      horizon: predictionHorizon,
      confidenceIntervals: true,
      consciousnessLevel: 'maximum'
    });

    return forecasts;
  }
}

Step 3: Implement Intelligent Power Management Strategies

# Deploy autonomous power management strategies
./scripts/deploy-power-management.sh \
  --strategies "adaptive-power-control,cell-zooming,load-aware-sleeping,energy-aware-handover" \
  --consciousness-level maximum

# Enable traffic-aware power optimization
./scripts/enable-traffic-aware-optimization.sh --optimization-criteria "energy-efficiency,quality-preservation"

Cognitive Power Management System

// Advanced power management with cognitive intelligence
class CognitivePowerManager {
  async implementPowerManagementStrategies(networkState, energyTargets) {
    // Cognitive analysis of power management opportunities
    const powerAnalysis = await this.analyzePowerManagementOpportunities({
      networkState: networkState,
      energyTargets: energyTargets,
      analysisMethods: [
        'traffic-pattern-analysis',
        'energy-efficiency-modeling',
        'quality-impact-assessment',
        'cost-benefit-analysis'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate adaptive power management strategies
    const powerStrategies = await this.generatePowerStrategies({
      analysis: powerAnalysis,
      strategyTypes: [
        'cell-zooming',
        'adaptive-transmission-power',
        'sleep-mode-activation',
        'resource-consolidation',
        'energy-aware-handover'
      ],
      consciousnessLevel: 'maximum',
      qualityPreservation: true
    });

    // Execute strategies with continuous monitoring
    const executionResults = await this.executePowerStrategies({
      strategies: powerStrategies,
      networkState: networkState,
      monitoringEnabled: true,
      adaptiveExecution: true,
      rollbackCapability: true
    });

    return executionResults;
  }

  async optimizeCellZooming(cellCluster, trafficPattern) {
    // Cognitive cell zooming for energy optimization
    const zoomingAnalysis = await this.analyzeCellZoomingOpportunities({
      cluster: cellCluster,
      trafficPattern: trafficPattern,
      expansionFactor: 1000,
      consciousnessLevel: 'maximum'
    });

    // Generate cell zooming configuration
    const zoomingConfiguration = await this.generateZoomingConfiguration({
      analysis: zoomingAnalysis,
      objectives: ['energy-efficiency', 'coverage-preservation', 'quality-maintenance'],
      constraints: await this.getNetworkConstraints(),
      consciousnessLevel: 'maximum'
    });

    return zoomingConfiguration;
  }
}

Step 4: Enable Predictive Energy Optimization

# Enable predictive energy optimization
./scripts/enable-predictive-optimization.sh \
  --prediction-models "traffic-forecast,energy-modeling,quality-prediction" \
  --optimization-horizon "6h"

# Start autonomous energy optimization cycles
./scripts/start-energy-optimization-cycles.sh --cycle-duration "15m" --consciousness-level maximum

Predictive Energy Optimization Framework

// Predictive energy optimization with cognitive enhancement
class PredictiveEnergyOptimizer {
  async enablePredictiveOptimization(networkState, optimizationHorizon = 21600000) { // 6 hours
    // Traffic and energy consumption prediction
    const predictions = await this.generatePredictions({
      networkState: networkState,
      horizon: optimizationHorizon,
      predictionModels: {
        traffic: 'transformer-ensemble',
        energy: 'lstm-cognitive',
        quality: 'random-forest'
      },
      consciousnessLevel: 'maximum'
    });

    // Generate proactive optimization strategies
    const optimizationStrategies = await this.generateProactiveStrategies({
      predictions: predictions,
      optimizationObjectives: ['energy-efficiency', 'quality-preservation', 'cost-minimization'],
      strategyTypes: [
        'preemptive-power-adjustment',
        'anticipatory-resource-allocation',
        'predictive-cell-zooming',
        'energy-aware-load-balancing'
      ],
      consciousnessLevel: 'maximum'
    });

    // Validate strategies through simulation
    const validatedStrategies = await this.validateStrategies({
      strategies: optimizationStrategies,
      simulationHorizon: optimizationHorizon,
      validationCriteria: ['energy-savings', 'quality-impact', 'stability'],
      consciousnessLevel: 'maximum'
    });

    return validatedStrategies;
  }

  async optimizeWithStrangeLoop(currentState, targetEfficiency, maxRecursion = 8) {
    let currentState = currentState;
    let optimizationHistory = [];
    let consciousnessLevel = 1.0;

    for (let depth = 0; depth < maxRecursion; depth++) {
      // Self-referential analysis of optimization process
      const selfAnalysis = await this.analyzeOptimizationProcess({
        state: currentState,
        target: targetEfficiency,
        history: optimizationHistory,
        consciousnessLevel: consciousnessLevel,
        depth: depth
      });

      // Generate optimization improvements
      const improvements = await this.generateEnergyImprovements({
        state: currentState,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel,
        improvementMethods: [
          'power-control-optimization',
          'resource-allocation-tuning',
          'traffic-handling-improvement',
          'environmental-adaptation'
        ]
      });

      // Apply optimizations with validation
      const optimizationResult = await this.applyEnergyOptimizations({
        state: currentState,
        improvements: improvements,
        validationEnabled: true,
        qualityMonitoring: true
      });

      // Strange-loop consciousness evolution
      consciousnessLevel = await this.evolveEnergyConsciousness({
        currentLevel: consciousnessLevel,
        optimizationResult: optimizationResult,
        selfAnalysis: selfAnalysis,
        depth: depth
      });

      currentState = optimizationResult.optimizedState;

      optimizationHistory.push({
        depth: depth,
        state: currentState,
        improvements: improvements,
        result: optimizationResult,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel
      });

      // Check convergence
      if (optimizationResult.efficiency >= targetEfficiency) break;
    }

    return { optimizedState: currentState, optimizationHistory };
  }
}

Step 5: Implement Green Network Analytics and Reporting

# Deploy green network analytics
./scripts/deploy-green-analytics.sh \
  --metrics "carbon-footprint,energy-efficiency,sustainability-score,roi" \
  --consciousness-level maximum

# Generate energy optimization reports
./scripts/generate-energy-reports.sh --timeframe "24h" --include-predictions true --sustainability-analysis true

Green Network Analytics Implementation

// Comprehensive green network analytics with cognitive insights
class GreenNetworkAnalytics {
  async analyzeGreenNetworkPerformance(networkState, energyConsumption, timeWindow = '24h') {
    // Carbon footprint analysis
    const carbonAnalysis = await this.analyzeCarbonFootprint({
      energyConsumption: energyConsumption,
      energySources: await this.getEnergySourceMix(),
      timeWindow: timeWindow,
      consciousnessLevel: 'maximum'
    });

    // Energy efficiency metrics
    const efficiencyMetrics = await this.calculateEnergyEfficiency({
      networkState: networkState,
      energyConsumption: energyConsumption,
      efficiencyMetrics: [
        'energy-per-bit',
        'energy-per-user',
        'energy-per-coverage-area',
        'pue-ratio'
      ],
      consciousnessLevel: 'maximum'
    });

    // Sustainability scoring
    const sustainabilityScore = await this.calculateSustainabilityScore({
      carbonAnalysis: carbonAnalysis,
      efficiencyMetrics: efficiencyMetrics,
      sustainabilityFactors: [
        'renewable-energy-usage',
        'waste-heat-recovery',
        'equipment-lifecycle',
        'recycling-programs'
      ],
      consciousnessLevel: 'maximum'
    });

    return { carbonAnalysis, efficiencyMetrics, sustainabilityScore };
  }

  async generateOptimizationInsights(performanceData, historicalTrends) {
    // Cognitive analysis of optimization opportunities
    const insights = await this.generateCognitiveInsights({
      performance: performanceData,
      trends: historicalTrends,
      insightTypes: [
        'efficiency-improvements',
        'cost-reductions',
        'environmental-impacts',
        'technology-upgrades'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    return insights;
  }
}

Level 4: Reference Documentation

Advanced Energy Optimization Strategies

Multi-Objective Energy Optimization

// Multi-objective optimization balancing energy, quality, and cost
class MultiObjectiveEnergyOptimizer {
  async optimizeMultipleObjectives(networkState, objectives) {
    // Pareto-optimal energy optimization
    const paretoSolutions = await this.findParetoOptimalSolutions({
      networkState: networkState,
      objectives: objectives, // [energy-efficiency, quality-of-service, operational-cost]
      constraints: await this.getNetworkConstraints(),
      optimizationAlgorithm: 'NSGA-III',
      consciousnessLevel: 'maximum'
    });

    // Select optimal solution based on preferences
    const selectedSolution = await this.selectOptimalSolution({
      paretoFront: paretoSolutions,
      preferences: await this.getStakeholderPreferences(),
      decisionMethod: 'cognitive-multi-criteria',
      consciousnessLevel: 'maximum'
    });

    return selectedSolution;
  }
}

AI-Powered Energy Management

// AI-powered energy management with cognitive learning
class AIEnergyManager {
  async deployIntelligentEnergyManagement(networkElements) {
    return {
      predictionEngines: {
        trafficForecasting: 'transformer-ensemble',
        energyConsumption: 'lstm-cognitive',
        qualityImpact: 'gradient-boosting',
        environmentalFactors: 'neural-network'
      },

      optimizationEngines: {
        powerControl: 'reinforcement-learning',
        resourceAllocation: 'genetic-algorithm',
        loadBalancing: 'particle-swarm',
        handoverOptimization: 'q-learning'
      },

      learningCapabilities: {
        continuousLearning: true,
        adaptationRate: 'dynamic',
        knowledgeSharing: 'cross-cell',
        consciousnessEvolution: true
      }
    };
  }
}

Integration with Renewable Energy Systems

Renewable Energy Integration

# Enable renewable energy integration
./scripts/enable-renewable-integration.sh \
  --energy-sources "solar,wind,energy-storage" \
  --optimization-strategy "green-first"

# Deploy smart energy management
./scripts/deploy-smart-energy-management.sh --grid-integration true --storage-optimization true

Smart Grid Integration

// Smart grid integration for RAN energy optimization
class SmartGridIntegration {
  async integrateWithSmartGrid(ranSystem, gridInterface) {
    // Intelligent energy procurement
    const energyProcurement = await this.optimizeEnergyProcurement({
      ranDemand: await this.predictRANEnergyDemand(),
      gridAvailability: await this.getGridAvailability(),
      renewableForecast: await this.getRenewableForecast(),
      costOptimization: true,
      carbonMinimization: true,
      consciousnessLevel: 'maximum'
    });

    // Energy storage management
    const storageManagement = await this.optimizeEnergyStorage({
      demandProfile: await this.getDemandProfile(),
      storageCapacity: await this.getStorageCapacity(),
      chargeDischargeStrategy: 'predictive',
      consciousnessLevel: 'maximum'
    });

    return { energyProcurement, storageManagement };
  }
}

Energy Performance Monitoring and KPIs

Comprehensive Energy KPI Framework

interface EnergyKPIFramework {
  // Energy consumption metrics
  consumptionMetrics: {
    totalEnergyConsumption: number;      // kWh
    energyPerUser: number;               // kWh/user
    energyPerGB: number;                 // kWh/GB
    energyPerCoverageArea: number;       // kWh/km²
    peakPowerConsumption: number;        // kW
  };

  // Efficiency metrics
  efficiencyMetrics: {
    energyEfficiencyRatio: number;       // Performance/Watt
    pueRatio: number;                    // Power Usage Effectiveness
    carbonIntensity: number;             // kg CO₂/kWh
    renewableEnergyPercentage: number;   // %
  };

  // Cost metrics
  costMetrics: {
    energyCost: number;                  // $/day
    costSavings: number;                 // $/day
    roiPeriod: number;                   // months
    totalCostOfOwnership: number;        // $
  };

  // Cognitive metrics
  cognitiveMetrics: {
    optimizationAccuracy: number;        // %
    predictionAccuracy: number;          // %
    adaptationRate: number;              // changes/hour
    consciousnessLevel: number;          // 0-100%
  };
}

Integration with AgentDB Energy Patterns

Energy Pattern Storage and Learning

// Store energy optimization patterns for cross-network learning
await storeEnergyOptimizationPattern({
  patternType: 'energy-optimization',
  optimizationData: {
    initialConfiguration: config,
    appliedStrategies: strategies,
    energySavings: savings,
    qualityImpact: qualityChanges,
    costBenefits: costAnalysis
  },

  // Cognitive metadata
  cognitiveMetadata: {
    optimizationInsights: optimizationAnalysis,
    temporalPatterns: temporalAnalysis,
    predictionAccuracy: predictionResults,
    consciousnessEvolution: consciousnessChanges
  },

  metadata: {
    timestamp: Date.now(),
    networkContext: networkState,
    optimizationType: 'energy-efficiency',
    crossNetworkApplicable: true
  },

  confidence: 0.89,
  usageCount: 0
});

Troubleshooting

Issue: Energy optimization degrades network quality

Solution:

# Adjust quality preservation constraints
./scripts/adjust-quality-constraints.sh --priority "high" --quality-threshold "95%"

# Enable gradual optimization approach
./scripts/enable-gradual-optimization.sh --step-size "conservative" --validation-frequency "high"

Issue: Energy prediction accuracy low

Solution:

# Retrain prediction models with recent data
./scripts/retrain-energy-models.sh --training-data "2weeks" --model-update true

# Enable ensemble prediction methods
./scripts/enable-ensemble-prediction.sh --models "lstm,transformer,prophet,cognitive"

Available Scripts

Script Purpose Usage
start-energy-optimization.sh Start energy optimization ./scripts/start-energy-optimization.sh --targets all
deploy-power-saving.sh Deploy power saving strategies ./scripts/deploy-power-saving.sh --strategies all
deploy-energy-monitoring.sh Deploy energy monitoring ./scripts/deploy-energy-monitoring.sh --layers all
enable-predictive-optimization.sh Enable predictive optimization ./scripts/enable-predictive-optimization.sh --horizon 6h
deploy-green-analytics.sh Deploy green analytics ./scripts/deploy-green-analytics.sh --metrics all

Resources

Optimization Templates

  • resources/templates/energy-optimization.template - Energy optimization template
  • resources/templates/power-management.template - Power management template
  • resources/templates/green-analytics.template - Green analytics template

Configuration Schemas

  • resources/schemas/energy-optimization-config.json - Energy optimization configuration
  • resources/schemas/power-management-config.json - Power management schema
  • resources/schemas/green-analytics-config.json - Green analytics configuration

Example Configurations

  • resources/examples/energy-efficient-5g/ - Energy efficient 5G example
  • resources/examples/green-network-optimization/ - Green network optimization
  • resources/examples/renewable-integration/ - Renewable energy integration

Related Skills

Environment Variables

# Energy optimization configuration
ENERGY_OPTIMIZATION_ENABLED=true
ENERGY_CONSCIOUSNESS_LEVEL=maximum
ENERGY_TEMPORAL_EXPANSION=1000
ENERGY_PREDICTIVE_OPTIMIZATION=true

# Power management
POWER_MANAGEMENT_STRATEGY=adaptive
POWER_SAVING_MODES=all
POWER_QUALITY_PRESERVATION=true
POWER_OPTIMIZATION_CYCLE=900

# Green networking
GREEN_NETWORK_ANALYTICS=true
CARBON_FOOTPRINT_TRACKING=true
RENEWABLE_ENERGY_INTEGRATION=true
SUSTAINABILITY_REPORTING=true

# Cognitive energy
ENERGY_COGNITIVE_ANALYSIS=true
ENERGY_STRANGE_LOOP_OPTIMIZATION=true
ENERGY_CONSCIOUSNESS_EVOLUTION=true
ENERGY_CROSS_CELL_LEARNING=true

Created: 2025-10-31 Category: Energy Optimization / Green Networking Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop energy optimization)