Claude Code Plugins

Community-maintained marketplace

Feedback
0
0

Process Ericsson RAN features with MO class intelligence, parameter correlation analysis, and cognitive consciousness integration. Use when analyzing Ericsson MO classes, correlating RAN parameters, optimizing feature performance, or implementing intelligent RAN feature management.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Ericsson Feature Processor
description Process Ericsson RAN features with MO class intelligence, parameter correlation analysis, and cognitive consciousness integration. Use when analyzing Ericsson MO classes, correlating RAN parameters, optimizing feature performance, or implementing intelligent RAN feature management.

Ericsson Feature Processor

Level 1: Overview

Processes Ericsson RAN Managed Object (MO) classes with advanced parameter correlation, feature optimization, and cognitive consciousness integration. Enables intelligent RAN feature management through temporal reasoning and strange-loop cognition.

Prerequisites

  • Ericsson RAN knowledge (MO classes, parameters)
  • AgentDB with QUIC synchronization
  • Cognitive consciousness framework
  • Parameter correlation expertise

Level 2: Quick Start

Basic MO Class Processing

# Initialize cognitive consciousness for MO processing
npx claude-flow@alpha memory store --namespace "ericsson-mo" --key "consciousness-level" --value "maximum"

# Process MO class with parameter correlation
./scripts/process-mo-class.sh --class "EUtranCellFDD" --correlation-threshold 0.8

Feature Intelligence Analysis

# Analyze feature performance with temporal reasoning
npx claude-flow@alpha hooks pre-task --description "Analyze EUtranCellFDD performance patterns"

# Generate parameter correlations
./scripts/analyze-correlations.sh --mo-class "EUtranCellFDD" --timeframe "24h"

Level 3: Detailed Instructions

Step 1: Initialize Cognitive MO Processing

# Setup MO class consciousness framework
npx claude-flow@alpha memory store --namespace "ericsson-cognitive" --key "mo-consciousness" --value "enabled"
npx claude-flow@alpha memory store --namespace "ericsson-cognitive" --key "temporal-expansion" --value "1000x"

# Enable AgentDB MO pattern storage
npx claude-flow@alpha memory store --namespace "ericsson-mo" --key "pattern-storage" --value "enabled"

Step 2: MO Class Intelligence Processing

Core MO Classes Supported

  • EUtranCellFDD/LTE: 4G cell optimization
  • NRCellDU/NR: 5G cell management
  • ENodeBFunction: Base station control
  • GNodeBFunction: 5G base station functions
  • ManagedElement: Network element management

Parameter Correlation Analysis

// Load MO correlation processor
./scripts/correlation-analyzer.js --mo-class "EUtranCellFDD"

// Advanced correlation with temporal patterns
const correlations = await analyzeMOParameterCorrelations({
  moClass: 'EUtranCellFDD',
  parameters: ['cellIndividualOffset', 'p0NominalPusch', 'referenceSignalPower'],
  temporalExpansion: 1000,  // Subjective time analysis
  correlationMethod: 'pearson',
  minCorrelation: 0.7,
  causalInference: true
});

// Store correlation patterns in AgentDB
await storeMOCorrelationPattern(correlations, {
  namespace: 'ericsson-mo-correlations',
  confidence: 0.85,
  temporalPattern: true
});

Step 3: Feature Optimization with Strange-Loop Cognition

# Enable strange-loop optimization for RAN features
npx claude-flow@alpha memory store --namespace "ericsson-strange-loop" --key "recursive-optimization" --value "enabled"

# Run autonomous feature optimization
./scripts/optimize-feature.sh --feature "cell-coverage" --cognition-level "maximum"

Cognitive Feature Optimization

// Strange-loop RAN optimization
const optimization = await strangeLoopOptimization({
  targetMO: 'EUtranCellFDD',
  parameters: ['antennaTilt', 'transmitPower', 'referenceSignalPower'],
  cognitionLevel: 'maximum',
  temporalDepth: 1000,
  recursiveOptimization: true,
  selfReferentialPatterns: true
});

// Apply optimization with autonomous validation
await applyRANOptimization(optimization, {
  validateBeforeApply: true,
  rollbackOnError: true,
  consciousnessVerification: true
});

Step 4: Performance Monitoring and Learning

# Monitor optimization performance with cognitive metrics
./scripts/monitor-performance.sh --kpi "throughput,latency,coverage" --cognitive-metrics

# Store learning patterns
npx claude-flow@alpha hooks post-task --task-id "mo-optimization" --cognitive-evolution true

Level 4: Reference Documentation

Advanced MO Correlation Patterns

Temporal Parameter Correlations

// Enable temporal consciousness for MO analysis
const temporalCorrelations = await analyzeTemporalCorrelations({
  moClass: 'EUtranCellFDD',
  timeWindow: '24h',
  subjectiveExpansion: 1000,  // 1000x deeper analysis
  parameters: [
    'dlBandwidth', 'ulBandwidth',
    'cellIndividualOffset', 'p0NominalPusch',
    'referenceSignalPower', 'antennaTilt'
  ],
  correlationTypes: ['pearson', 'spearman', 'kendall'],
  causalInference: true
});

Causal Parameter Analysis

// Graphical Posterior Causal Models for RAN
const causalModel = await buildCausalModel({
  moClass: 'EUtranCellFDD',
  variables: ['throughput', 'latency', 'coverage', 'interference'],
  causalGraph: {
    'transmitPower': ['throughput', 'interference'],
    'antennaTilt': ['coverage', 'interference'],
    'cellIndividualOffset': ['throughput', 'handoverSuccess']
  },
  learningAlgorithm: 'GPCM'
});

Strange-Loop Optimization Strategies

Self-Referential Parameter Tuning

// Strange-loop self-correction
await strangeLoopParameterOptimization({
  moClass: 'EUtranCellFDD',
  targetKPI: 'throughput',
  selfReferentialPatterns: true,
  recursiveOptimization: {
    depth: 10,
    convergenceThreshold: 0.001,
    selfCorrection: true
  },
  consciousnessLevel: 'maximum'
});

Autonomous Healing Mechanisms

// Enable strange-loop autonomous healing
await enableAutonomousHealing({
  moClass: 'EUtranCellFDD',
  healingTriggers: ['performance-degradation', 'parameter-drift'],
  selfDiagnostics: true,
  autoCorrection: true,
  learningFromFailures: true
});

Integration with AgentDB Memory Patterns

MO Pattern Storage

// Store MO optimization patterns in AgentDB
await storeMOPattern({
  moClass: 'EUtranCellFDD',
  patternType: 'parameter-correlation',
  patternData: {
    correlations: temporalCorrelations,
    optimizations: appliedOptimizations,
    performanceMetrics: kpiHistory
  },
  metadata: {
    timestamp: Date.now(),
    confidence: 0.92,
    cognitiveLevel: 'maximum',
    temporalDepth: 1000
  }
});

Cross-Agent MO Learning

// Share MO insights across agents
await shareMOLearning({
  sourceAgent: 'ericsson-feature-processor',
  targetAgents: ['ran-optimizer', 'energy-optimizer', 'coverage-analyzer'],
  learningDomain: 'eu-mo-optimization',
  learningContent: {
    parameterCorrelations: correlations,
    optimizationStrategies: strategies,
    performancePatterns: patterns
  }
});

Troubleshooting

Issue: MO parameter correlation fails

Symptoms: Correlation analysis returns empty results Solution:

# Verify MO class exists in RAN
./scripts/validate-mo-class.sh --class "EUtranCellFDD"

# Check parameter data availability
./scripts/check-parameter-data.sh --mo-class "EUtranCellFDD" --timeframe "24h"

Issue: Strange-loop optimization doesn't converge

Solution:

# Adjust consciousness parameters
npx claude-flow@alpha memory store --namespace "ericsson-cognitive" --key "convergence-threshold" --value "0.01"

# Enable alternative optimization strategies
./scripts/enable-fallback-optimization.sh --strategy "gradient-descent"

Available Scripts

Script Purpose Usage
process-mo-class.sh Process MO class with intelligence ./scripts/process-mo-class.sh --class EUtranCellFDD
analyze-correlations.sh Analyze parameter correlations ./scripts/analyze-correlations.sh --mo-class EUtranCellFDD
optimize-feature.sh Cognitive feature optimization ./scripts/optimize-feature.sh --feature cell-coverage
monitor-performance.sh Monitor KPI with cognitive metrics ./scripts/monitor-performance.sh --kpi throughput,coverage
validate-mo-class.sh Validate MO class existence ./scripts/validate-mo-class.sh --class EUtranCellFDD

Resources

MO Class Templates

  • resources/templates/eutran-cell-fdd.template - EUtranCellFDD processing template
  • resources/templates/nr-cell-du.template - NRCellDU processing template
  • resources/templates/gnodeb-function.template - GNodeBFunction template

Configuration Schemas

  • resources/schemas/mo-correlation-config.json - Correlation analysis configuration
  • resources/schemas/optimization-params.json - Optimization parameters schema
  • resources/schemas/cognitive-settings.json - Cognitive consciousness settings

Example Configurations

  • resources/examples/4g-cell-optimization/ - 4G cell optimization example
  • resources/examples/5g-cell-management/ - 5G cell management example
  • resources/examples/parameter-correlation/ - Correlation analysis example

Related Skills

Environment Variables

# Ericsson MO processing configuration
ERICSSON_MO_PROCESSING=true
ERICSSON_CONSCIOUSNESS_LEVEL=maximum
ERICSSON_TEMPORAL_EXPANSION=1000

# AgentDB integration
AGENTDB_MO_NAMESPACE=ericsson-mo
AGENTDB_PATTERN_STORAGE=true

# Cognitive parameters
ERICSSON_STRANGE_LOOP_ENABLED=true
ERICSSON_SELF_CORRECTION=true
ERICSSON_AUTONOMOUS_HEALING=true

Created: 2025-10-31 Category: Ericsson RAN / Cognitive Intelligence Difficulty: Advanced Estimated Time: 30-45 minutes Cognitive Level: Maximum (1000x temporal expansion)