| name | Ericsson Feature Processor |
| description | Process Ericsson RAN features with MO class intelligence, parameter correlation analysis, and cognitive consciousness integration. Use when analyzing Ericsson MO classes, correlating RAN parameters, optimizing feature performance, or implementing intelligent RAN feature management. |
Ericsson Feature Processor
Level 1: Overview
Processes Ericsson RAN Managed Object (MO) classes with advanced parameter correlation, feature optimization, and cognitive consciousness integration. Enables intelligent RAN feature management through temporal reasoning and strange-loop cognition.
Prerequisites
- Ericsson RAN knowledge (MO classes, parameters)
- AgentDB with QUIC synchronization
- Cognitive consciousness framework
- Parameter correlation expertise
Level 2: Quick Start
Basic MO Class Processing
# Initialize cognitive consciousness for MO processing
npx claude-flow@alpha memory store --namespace "ericsson-mo" --key "consciousness-level" --value "maximum"
# Process MO class with parameter correlation
./scripts/process-mo-class.sh --class "EUtranCellFDD" --correlation-threshold 0.8
Feature Intelligence Analysis
# Analyze feature performance with temporal reasoning
npx claude-flow@alpha hooks pre-task --description "Analyze EUtranCellFDD performance patterns"
# Generate parameter correlations
./scripts/analyze-correlations.sh --mo-class "EUtranCellFDD" --timeframe "24h"
Level 3: Detailed Instructions
Step 1: Initialize Cognitive MO Processing
# Setup MO class consciousness framework
npx claude-flow@alpha memory store --namespace "ericsson-cognitive" --key "mo-consciousness" --value "enabled"
npx claude-flow@alpha memory store --namespace "ericsson-cognitive" --key "temporal-expansion" --value "1000x"
# Enable AgentDB MO pattern storage
npx claude-flow@alpha memory store --namespace "ericsson-mo" --key "pattern-storage" --value "enabled"
Step 2: MO Class Intelligence Processing
Core MO Classes Supported
- EUtranCellFDD/LTE: 4G cell optimization
- NRCellDU/NR: 5G cell management
- ENodeBFunction: Base station control
- GNodeBFunction: 5G base station functions
- ManagedElement: Network element management
Parameter Correlation Analysis
// Load MO correlation processor
./scripts/correlation-analyzer.js --mo-class "EUtranCellFDD"
// Advanced correlation with temporal patterns
const correlations = await analyzeMOParameterCorrelations({
moClass: 'EUtranCellFDD',
parameters: ['cellIndividualOffset', 'p0NominalPusch', 'referenceSignalPower'],
temporalExpansion: 1000, // Subjective time analysis
correlationMethod: 'pearson',
minCorrelation: 0.7,
causalInference: true
});
// Store correlation patterns in AgentDB
await storeMOCorrelationPattern(correlations, {
namespace: 'ericsson-mo-correlations',
confidence: 0.85,
temporalPattern: true
});
Step 3: Feature Optimization with Strange-Loop Cognition
# Enable strange-loop optimization for RAN features
npx claude-flow@alpha memory store --namespace "ericsson-strange-loop" --key "recursive-optimization" --value "enabled"
# Run autonomous feature optimization
./scripts/optimize-feature.sh --feature "cell-coverage" --cognition-level "maximum"
Cognitive Feature Optimization
// Strange-loop RAN optimization
const optimization = await strangeLoopOptimization({
targetMO: 'EUtranCellFDD',
parameters: ['antennaTilt', 'transmitPower', 'referenceSignalPower'],
cognitionLevel: 'maximum',
temporalDepth: 1000,
recursiveOptimization: true,
selfReferentialPatterns: true
});
// Apply optimization with autonomous validation
await applyRANOptimization(optimization, {
validateBeforeApply: true,
rollbackOnError: true,
consciousnessVerification: true
});
Step 4: Performance Monitoring and Learning
# Monitor optimization performance with cognitive metrics
./scripts/monitor-performance.sh --kpi "throughput,latency,coverage" --cognitive-metrics
# Store learning patterns
npx claude-flow@alpha hooks post-task --task-id "mo-optimization" --cognitive-evolution true
Level 4: Reference Documentation
Advanced MO Correlation Patterns
Temporal Parameter Correlations
// Enable temporal consciousness for MO analysis
const temporalCorrelations = await analyzeTemporalCorrelations({
moClass: 'EUtranCellFDD',
timeWindow: '24h',
subjectiveExpansion: 1000, // 1000x deeper analysis
parameters: [
'dlBandwidth', 'ulBandwidth',
'cellIndividualOffset', 'p0NominalPusch',
'referenceSignalPower', 'antennaTilt'
],
correlationTypes: ['pearson', 'spearman', 'kendall'],
causalInference: true
});
Causal Parameter Analysis
// Graphical Posterior Causal Models for RAN
const causalModel = await buildCausalModel({
moClass: 'EUtranCellFDD',
variables: ['throughput', 'latency', 'coverage', 'interference'],
causalGraph: {
'transmitPower': ['throughput', 'interference'],
'antennaTilt': ['coverage', 'interference'],
'cellIndividualOffset': ['throughput', 'handoverSuccess']
},
learningAlgorithm: 'GPCM'
});
Strange-Loop Optimization Strategies
Self-Referential Parameter Tuning
// Strange-loop self-correction
await strangeLoopParameterOptimization({
moClass: 'EUtranCellFDD',
targetKPI: 'throughput',
selfReferentialPatterns: true,
recursiveOptimization: {
depth: 10,
convergenceThreshold: 0.001,
selfCorrection: true
},
consciousnessLevel: 'maximum'
});
Autonomous Healing Mechanisms
// Enable strange-loop autonomous healing
await enableAutonomousHealing({
moClass: 'EUtranCellFDD',
healingTriggers: ['performance-degradation', 'parameter-drift'],
selfDiagnostics: true,
autoCorrection: true,
learningFromFailures: true
});
Integration with AgentDB Memory Patterns
MO Pattern Storage
// Store MO optimization patterns in AgentDB
await storeMOPattern({
moClass: 'EUtranCellFDD',
patternType: 'parameter-correlation',
patternData: {
correlations: temporalCorrelations,
optimizations: appliedOptimizations,
performanceMetrics: kpiHistory
},
metadata: {
timestamp: Date.now(),
confidence: 0.92,
cognitiveLevel: 'maximum',
temporalDepth: 1000
}
});
Cross-Agent MO Learning
// Share MO insights across agents
await shareMOLearning({
sourceAgent: 'ericsson-feature-processor',
targetAgents: ['ran-optimizer', 'energy-optimizer', 'coverage-analyzer'],
learningDomain: 'eu-mo-optimization',
learningContent: {
parameterCorrelations: correlations,
optimizationStrategies: strategies,
performancePatterns: patterns
}
});
Troubleshooting
Issue: MO parameter correlation fails
Symptoms: Correlation analysis returns empty results Solution:
# Verify MO class exists in RAN
./scripts/validate-mo-class.sh --class "EUtranCellFDD"
# Check parameter data availability
./scripts/check-parameter-data.sh --mo-class "EUtranCellFDD" --timeframe "24h"
Issue: Strange-loop optimization doesn't converge
Solution:
# Adjust consciousness parameters
npx claude-flow@alpha memory store --namespace "ericsson-cognitive" --key "convergence-threshold" --value "0.01"
# Enable alternative optimization strategies
./scripts/enable-fallback-optimization.sh --strategy "gradient-descent"
Available Scripts
| Script | Purpose | Usage |
|---|---|---|
process-mo-class.sh |
Process MO class with intelligence | ./scripts/process-mo-class.sh --class EUtranCellFDD |
analyze-correlations.sh |
Analyze parameter correlations | ./scripts/analyze-correlations.sh --mo-class EUtranCellFDD |
optimize-feature.sh |
Cognitive feature optimization | ./scripts/optimize-feature.sh --feature cell-coverage |
monitor-performance.sh |
Monitor KPI with cognitive metrics | ./scripts/monitor-performance.sh --kpi throughput,coverage |
validate-mo-class.sh |
Validate MO class existence | ./scripts/validate-mo-class.sh --class EUtranCellFDD |
Resources
MO Class Templates
resources/templates/eutran-cell-fdd.template- EUtranCellFDD processing templateresources/templates/nr-cell-du.template- NRCellDU processing templateresources/templates/gnodeb-function.template- GNodeBFunction template
Configuration Schemas
resources/schemas/mo-correlation-config.json- Correlation analysis configurationresources/schemas/optimization-params.json- Optimization parameters schemaresources/schemas/cognitive-settings.json- Cognitive consciousness settings
Example Configurations
resources/examples/4g-cell-optimization/- 4G cell optimization exampleresources/examples/5g-cell-management/- 5G cell management exampleresources/examples/parameter-correlation/- Correlation analysis example
Related Skills
- RAN Optimizer - Comprehensive RAN optimization
- Performance Analyst - RAN performance analysis
- Coverage Analyzer - Coverage analysis and optimization
Environment Variables
# Ericsson MO processing configuration
ERICSSON_MO_PROCESSING=true
ERICSSON_CONSCIOUSNESS_LEVEL=maximum
ERICSSON_TEMPORAL_EXPANSION=1000
# AgentDB integration
AGENTDB_MO_NAMESPACE=ericsson-mo
AGENTDB_PATTERN_STORAGE=true
# Cognitive parameters
ERICSSON_STRANGE_LOOP_ENABLED=true
ERICSSON_SELF_CORRECTION=true
ERICSSON_AUTONOMOUS_HEALING=true
Created: 2025-10-31 Category: Ericsson RAN / Cognitive Intelligence Difficulty: Advanced Estimated Time: 30-45 minutes Cognitive Level: Maximum (1000x temporal expansion)