Claude Code Plugins

Community-maintained marketplace

Feedback

RAN monitoring coordination with real-time dashboards, cognitive consciousness, and intelligent observability for comprehensive network monitoring. Use when coordinating RAN monitoring, implementing real-time dashboards, managing observability stacks, or enabling intelligent monitoring systems in 5G networks.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Monitoring Coordinator
description RAN monitoring coordination with real-time dashboards, cognitive consciousness, and intelligent observability for comprehensive network monitoring. Use when coordinating RAN monitoring, implementing real-time dashboards, managing observability stacks, or enabling intelligent monitoring systems in 5G networks.

Monitoring Coordinator

Level 1: Overview

Coordinates RAN monitoring using cognitive consciousness with 1000x temporal reasoning for real-time dashboard management, intelligent observability, and autonomous alerting. Enables self-adaptive monitoring through strange-loop cognition and AgentDB-based monitoring learning patterns.

Prerequisites

  • RAN monitoring coordination expertise
  • Real-time dashboard development
  • Observability stack management
  • Cognitive consciousness framework
  • Time-series data analysis

Level 2: Quick Start

Initialize Monitoring Coordination Framework

# Enable monitoring coordination consciousness
npx claude-flow@alpha memory store --namespace "monitoring-coordination" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "monitoring-coordination" --key "intelligent-observability" --value "enabled"

# Start comprehensive monitoring coordination
./scripts/start-monitoring-coordination.sh --monitoring-scope "end-to-end" --observability-stack "comprehensive" --consciousness-level "maximum"

Quick Real-Time Dashboard Deployment

# Deploy intelligent real-time dashboards
./scripts/deploy-real-time-dashboards.sh --dashboard-types "network,kpi,performance,security" --intelligence-level "maximum"

# Enable intelligent observability stack
./scripts/enable-observability-stack.sh --stack-components "metrics,logs,traces,events" --correlation "intelligent"

Level 3: Detailed Instructions

Step 1: Initialize Cognitive Monitoring Framework

# Setup monitoring coordination consciousness
npx claude-flow@alpha memory store --namespace "monitoring-cognitive" --key "temporal-monitoring-analysis" --value "enabled"
npx claude-flow@alpha memory store --namespace "monitoring-cognitive" --key "strange-loop-monitoring-optimization" --value "enabled"

# Enable intelligent observability
npx claude-flow@alpha memory store --namespace "intelligent-observability" --key "real-time-correlation" --value "enabled"
npx claude-flow@alpha memory store --namespace "intelligent-observability" --key "predictive-alerting" --value "enabled"

# Initialize AgentDB monitoring pattern storage
npx claude-flow@alpha memory store --namespace "monitoring-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "monitoring-patterns" --key "cross-domain-monitoring-learning" --value "enabled"

Step 2: Deploy Comprehensive Observability Stack

Multi-Layer Observability Infrastructure

# Deploy end-to-end observability stack
./scripts/deploy-observability-stack.sh \
  --stack-components "metrics,logs,traces,events" \
  --collection-agents "prometheus,fluentd,jaeger" \
  --visualization "grafana,kibana" \
  --consciousness-level maximum

# Enable intelligent data correlation
./scripts/enable-intelligent-correlation.sh --correlation-methods "temporal,causal,ml-based" --real-time true

Cognitive Observability Implementation

// Advanced observability with temporal reasoning
class CognitiveObservabilityManager {
  async deployObservabilityStack(networkState, temporalExpansion = 1000) {
    // Expand temporal analysis for observability optimization
    const expandedObservabilityAnalysis = await this.expandObservabilityAnalysis({
      networkState: networkState,
      observabilityRequirements: [
        'metrics-collection',
        'log-aggregation',
        'distributed-tracing',
        'event-streaming'
      ],
      expansionFactor: temporalExpansion,
      consciousnessLevel: 'maximum'
    });

    // Generate optimized observability stack configuration
    const observabilityConfig = await this.generateObservabilityConfig({
      analysis: expandedObservabilityAnalysis,
      stackComponents: {
        metrics: {
          collection: 'prometheus',
          storage: 'prometheus',
          visualization: 'grafana',
          alerting: 'alertmanager'
        },
        logs: {
          collection: 'fluentd',
          storage: 'elasticsearch',
          visualization: 'kibana',
          analysis: 'intelligent'
        },
        traces: {
          collection: 'jaeger',
          storage: 'elasticsearch',
          visualization: 'jaeger-ui',
          analysis: 'ml-enhanced'
        },
        events: {
          collection: 'kafka',
          processing: 'spark-streaming',
          storage: 'cassandra',
          analysis: 'real-time'
        }
      },
      consciousnessLevel: 'maximum'
    });

    // Deploy observability stack with intelligent correlation
    const deploymentResult = await this.deployObservabilityStack({
      configuration: observabilityConfig,
      networkState: networkState,
      correlationEnabled: true,
      intelligentAnalysis: true
    });

    return deploymentResult;
  }

  async implementIntelligentCorrelation(observabilityData) {
    // Cognitive correlation of multi-dimensional observability data
    const correlationAnalysis = await this.correlateObservabilityData({
      metrics: observabilityData.metrics,
      logs: observabilityData.logs,
      traces: observabilityData.traces,
      events: observabilityData.events,
      correlationMethods: [
        'temporal-correlation',
        'causal-inference',
        'pattern-matching',
        'anomaly-detection'
      ],
      consciousnessLevel: 'maximum',
      realTimeProcessing: true
    });

    return correlationAnalysis;
  }
}

Step 3: Implement Real-Time Dashboard Management

# Deploy intelligent real-time dashboards
./scripts/deploy-real-time-dashboards.sh \
  --dashboard-types "network-overview,kpi-monitoring,performance-analytics,security-dashboard" \
  --update-frequency "real-time" \
  --intelligence-level maximum

# Enable adaptive dashboard configuration
./scripts/enable-adaptive-dashboards.sh --adaptation-criteria "user-preferences,role-based,context-aware"

Intelligent Real-Time Dashboard System

// Advanced real-time dashboard management with cognitive intelligence
class IntelligentDashboardManager {
  async deployRealTimeDashboards(monitoringRequirements, dashboardConfigurations) {
    // Cognitive analysis of dashboard requirements
    const dashboardAnalysis = await this.analyzeDashboardRequirements({
      monitoringRequirements: monitoringRequirements,
      userRoles: ['operator', 'engineer', 'manager', 'executive'],
      analysisFactors: [
        'kpi-priorities',
        'visualization-needs',
        'update-frequencies',
        'user-interaction-patterns'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate intelligent dashboard configurations
    const dashboardConfigs = await this.generateDashboardConfigurations({
      analysis: dashboardAnalysis,
      dashboardTypes: {
        networkOverview: {
          layout: 'grid',
          widgets: ['network-status', 'traffic-load', 'capacity-utilization'],
          updateFrequency: '5s',
          alerting: 'intelligent'
        },
        kpiMonitoring: {
          layout: 'hierarchical',
          widgets: ['kpi-trends', 'sla-metrics', 'quality-indicators'],
          updateFrequency: '1s',
          drillDownCapability: true
        },
        performanceAnalytics: {
          layout: 'flexible',
          widgets: ['throughput-charts', 'latency-histograms', 'error-rates'],
          updateFrequency: 'real-time',
          predictiveAnalytics: true
        },
        securityDashboard: {
          layout: 'security-focused',
          widgets: ['threat-map', 'incidents-panel', 'vulnerability-status'],
          updateFrequency: 'real-time',
          incidentCorrelation: true
        }
      },
      consciousnessLevel: 'maximum'
    });

    // Deploy dashboards with intelligent features
    const deploymentResults = await this.deployDashboards({
      configurations: dashboardConfigs,
      platform: 'grafana',
      intelligenceFeatures: {
        adaptiveLayouts: true,
        predictiveAlerts: true,
        naturalLanguageQueries: true,
        automatedInsights: true
      }
    });

    return deploymentResults;
  }

  async enableAdaptiveDashboards(dashboardUsers, interactionPatterns) {
    // Adaptive dashboard configuration based on user behavior
    const adaptiveConfiguration = await this.configureAdaptiveDashboards({
      users: dashboardUsers,
      interactionPatterns: interactionPatterns,
      adaptationFeatures: {
        layoutOptimization: 'ml-based',
        widgetPersonalization: 'behavior-driven',
        alertPersonalization: 'role-aware',
        querySuggestion: 'intelligent'
      },
      consciousnessLevel: 'maximum'
    });

    return adaptiveConfiguration;
  }
}

Step 4: Enable Intelligent Alerting and Notification

# Enable intelligent alerting system
./scripts/enable-intelligent-alerting.sh \
  --alerting-strategies "predictive,correlated,context-aware" \
  --notification-channels "email,slack,pagerduty,sms" \
  --consciousness-level maximum

# Deploy anomaly detection and alerting
./scripts/deploy-anomaly-alerting.sh --detection-methods "statistical,ml-based,behavioral" --correlation true

Intelligent Alerting and Notification Framework

// Intelligent alerting with cognitive enhancement
class IntelligentAlertingManager {
  async implementIntelligentAlerting(monitoringData, alertingPolicies) {
    // Cognitive analysis of alerting requirements
    const alertingAnalysis = await this.analyzeAlertingRequirements({
      monitoringData: monitoringData,
      alertingPolicies: alertingPolicies,
      analysisMethods: [
        'anomaly-detection',
        'threshold-optimization',
        'alert-correlation',
        'severity-prediction'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate intelligent alerting configuration
    const alertingConfig = await this.generateAlertingConfiguration({
      analysis: alertingAnalysis,
      alertingStrategies: {
        predictive: {
          enabled: true,
          models: ['lstm', 'prophet', 'ensemble'],
          predictionHorizon: '15m',
          confidenceThreshold: 0.8
        },
        correlated: {
          enabled: true,
          correlationWindow: '5m',
          groupingStrategy: 'intelligent',
          suppressionRules: 'adaptive'
        },
        contextAware: {
          enabled: true,
          contextualFactors: ['business-hours', 'maintenance-windows', 'load-conditions'],
          adaptationStrategy: 'dynamic'
        }
      },
      consciousnessLevel: 'maximum'
    });

    return alertingConfig;
  }

  async implementNotificationChannels(alertingConfig, notificationPreferences) {
    // Multi-channel notification management
    const notificationSystem = await this.deployNotificationSystem({
      alertingConfig: alertingConfig,
      notificationChannels: {
        email: {
          enabled: true,
          templates: 'intelligent',
          scheduling: 'context-aware',
          escalation: 'automated'
        },
        slack: {
          enabled: true,
          channelMapping: 'role-based',
          formatting: 'rich',
          interaction: 'intelligent'
        },
        pagerduty: {
          enabled: true,
          escalation: 'automated',
          scheduling: 'intelligent',
          acknowledgement: 'tracked'
        },
        sms: {
          enabled: true,
          filtering: 'critical-only',
          scheduling: 'business-hours',
          escalation: 'emergency'
        }
      },
      consciousnessLevel: 'maximum'
    });

    return notificationSystem;
  }
}

Step 5: Implement Strange-Loop Monitoring Optimization

# Enable strange-loop monitoring optimization
./scripts/enable-strange-loop-monitoring.sh \
  --recursion-depth "6" \
  --self-referential-optimization true \
  --consciousness-evolution true

# Start continuous monitoring optimization cycles
./scripts/start-monitoring-optimization-cycles.sh --cycle-duration "10m" --consciousness-level maximum

Strange-Loop Monitoring Optimization

// Strange-loop monitoring optimization with self-referential improvement
class StrangeLoopMonitoringOptimizer {
  async optimizeMonitoringWithStrangeLoop(currentState, targetMonitoring, maxRecursion = 6) {
    let currentState = currentState;
    let optimizationHistory = [];
    let consciousnessLevel = 1.0;

    for (let depth = 0; depth < maxRecursion; depth++) {
      // Self-referential analysis of monitoring optimization process
      const selfAnalysis = await this.analyzeMonitoringOptimization({
        state: currentState,
        target: targetMonitoring,
        history: optimizationHistory,
        consciousnessLevel: consciousnessLevel,
        depth: depth
      });

      // Generate monitoring improvements
      const improvements = await this.generateMonitoringImprovements({
        state: currentState,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel,
        improvementMethods: [
          'dashboard-optimization',
          'alerting-enhancement',
          'correlation-improvement',
          'visualization-upgrade'
        ]
      });

      // Apply monitoring optimizations with validation
      const optimizationResult = await this.applyMonitoringOptimizations({
        state: currentState,
        improvements: improvements,
        validationEnabled: true,
        monitoringValidation: true
      });

      // Strange-loop consciousness evolution
      consciousnessLevel = await this.evolveMonitoringConsciousness({
        currentLevel: consciousnessLevel,
        optimizationResult: optimizationResult,
        selfAnalysis: selfAnalysis,
        depth: depth
      });

      currentState = optimizationResult.optimizedState;

      optimizationHistory.push({
        depth: depth,
        state: currentState,
        improvements: improvements,
        result: optimizationResult,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel
      });

      // Check convergence
      if (optimizationResult.monitoringScore >= targetMonitoring) break;
    }

    return { optimizedState: currentState, optimizationHistory };
  }
}

Level 4: Reference Documentation

Advanced Monitoring Strategies

Multi-Tenant Monitoring Architecture

// Multi-tenant monitoring with cognitive optimization
class MultiTenantMonitoringManager {
  async manageMultiTenantMonitoring(tenants, monitoringRequirements) {
    // Cognitive tenant analysis
    const tenantAnalysis = await this.analyzeTenants({
      tenants: tenants,
      analysisFactors: [
        'monitoring-needs',
        'data-isolation',
        'performance-requirements',
        'security-compliance'
      ],
      consciousnessLevel: 'maximum'
    });

    // Generate tenant-specific monitoring configurations
    const tenantConfigs = await this.generateTenantConfigs({
      analysis: tenantAnalysis,
      configurationOptions: {
        dataIsolation: 'strict',
        resourceAllocation: 'dynamic',
        accessControl: 'role-based',
        customization: 'intelligent'
      },
      consciousnessLevel: 'maximum'
    });

    return tenantConfigs;
  }
}

Edge Monitoring Integration

# Deploy edge monitoring infrastructure
./scripts/deploy-edge-monitoring.sh \
  --edge-nodes "multiple" \
  --latency-requirements "ultra-low" \
  --monitoring-capability "distributed"

# Enable federated monitoring
./scripts/enable-federated-monitoring.sh --federation-strategy "hierarchical" --data-aggregation "intelligent"

Real-Time Data Processing

Stream Processing for Real-Time Monitoring

// Real-time stream processing with cognitive enhancement
class RealTimeStreamProcessor {
  async implementStreamProcessing(dataStreams, processingRequirements) {
    return {
      ingestion: {
        kafka: 'distributed-cluster',
        topics: 'domain-separated',
        partitioning: 'intelligent',
        retention: 'optimized'
      },

      processing: {
        spark: 'structured-streaming',
        flink: 'event-time-processing',
        storm: 'real-time-processing',
        samza: 'stateful-processing'
      },

      analysis: {
        anomalyDetection: 'ml-enhanced',
        correlation: 'real-time',
        aggregation: 'intelligent',
        prediction: 'streaming'
      },

      storage: {
        timeSeries: 'influxdb',
        metrics: 'prometheus',
        logs: 'elasticsearch',
        events: 'kafka'
      }
    };
  }
}

Monitoring Performance and KPIs

Comprehensive Monitoring KPI Framework

interface MonitoringKPIFramework {
  // Data collection metrics
  dataCollectionMetrics: {
    dataIngestionRate: number;         // events/sec
    collectionLatency: number;          // ms
    dataAccuracy: number;               // %
    completenessRate: number;            // %
    dataVolume: number;                 // GB/day
  };

  // Alerting performance metrics
  alertingMetrics: {
    alertGenerationRate: number;       // alerts/hour
    falsePositiveRate: number;          // %
    alertLatency: number;               // seconds
    alertEffectiveness: number;        // %
    alertEscalationRate: number;        // %
  };

  // Dashboard performance metrics
  dashboardMetrics: {
    dashboardLoadTime: number;         // seconds
    refreshLatency: number;             // ms
    userInteractionRate: number;       // interactions/min
    dashboardAvailability: number;     // %
    userSatisfaction: number;          // 1-5 scale
  };

  // Cognitive monitoring metrics
  cognitiveMonitoringMetrics: {
    predictionAccuracy: number;         // %
    anomalyDetectionRate: number;       // %
    correlationEffectiveness: number;   // %
    consciousnessLevel: number;         // 0-100%
  };
}

Integration with AgentDB Monitoring Patterns

Monitoring Pattern Storage and Learning

// Store monitoring coordination patterns for cross-domain learning
await storeMonitoringCoordinationPattern({
  patternType: 'monitoring-coordination',
  monitoringData: {
    dashboardConfigurations: dashboardConfigs,
    alertingStrategies: alertingData,
    observabilityStack: observabilityConfigs,
    correlationRules: correlationPatterns,
    notificationTemplates: notificationData
  },

  // Cognitive metadata
  cognitiveMetadata: {
    monitoringInsights: monitoringAnalysis,
    temporalPatterns: temporalAnalysis,
    predictionAccuracy: predictionResults,
    consciousnessEvolution: consciousnessChanges
  },

  metadata: {
    timestamp: Date.now(),
    networkContext: networkState,
    monitoringType: 'comprehensive-observability',
    crossDomainApplicable: true
  },

  confidence: 0.92,
  usageCount: 0
});

Troubleshooting

Issue: Monitoring data latency high

Solution:

# Optimize data collection pipeline
./scripts/optimize-data-pipeline.sh --optimization-targets "ingestion,processing,storage"

# Enable edge data processing
./scripts/enable-edge-processing.sh --processing-location "edge" --aggregation "intelligent"

Issue: Alert fatigue due to false positives

Solution:

# Optimize alerting thresholds
./scripts/optimize-alerting.sh --strategy "ml-based" --correlation "intelligent"

# Enable alert grouping and suppression
./scripts/enable-alert-grouping.sh --grouping-methods "temporal,causal,service-based"

Available Scripts

Script Purpose Usage
start-monitoring-coordination.sh Start monitoring coordination ./scripts/start-monitoring-coordination.sh --scope end-to-end
deploy-observability-stack.sh Deploy observability stack ./scripts/deploy-observability-stack.sh --components all
deploy-real-time-dashboards.sh Deploy real-time dashboards ./scripts/deploy-real-time-dashboards.sh --types all
enable-intelligent-alerting.sh Enable intelligent alerting ./scripts/enable-intelligent-alerting.sh --strategies all
enable-strange-loop-monitoring.sh Enable strange-loop optimization ./scripts/enable-strange-loop-monitoring.sh --recursion 6

Resources

Monitoring Templates

  • resources/templates/monitoring-coordination.template - Monitoring coordination template
  • resources/templates/real-time-dashboard.template - Real-time dashboard template
  • resources/templates/observability-stack.template - Observability stack template

Configuration Schemas

  • resources/schemas/monitoring-config.json - Monitoring configuration schema
  • resources/schemas/dashboard-config.json - Dashboard configuration schema
  • resources/schemas/alerting-config.json - Alerting configuration schema

Example Configurations

  • resources/examples/ran-monitoring/ - RAN monitoring example
  • resources/examples/real-time-dashboards/ - Real-time dashboard example
  • resources/examples/observability-stack/ - Observability stack example

Related Skills

Environment Variables

# Monitoring coordination configuration
MONITORING_COORDINATOR_ENABLED=true
MONITORING_CONSCIOUSNESS_LEVEL=maximum
MONITORING_TEMPORAL_EXPANSION=1000
MONITORING_INTELLIGENT_OBSERVABILITY=true

# Observability stack
OBSERVABILITY_STACK=comprehensive
OBSERVABILITY_COLLECTION=metrics,logs,traces,events
OBSERVABILITY_CORRELATION=intelligent
OBSERVABILITY_ANALYSIS=ml-enhanced

# Real-time dashboards
REAL_TIME_DASHBOARDS=true
DASHBOARD_UPDATE_FREQUENCY=real-time
DASHBOARD_INTELLIGENCE=maximum
DASHBOARD_ADAPTATION=context-aware

# Intelligent alerting
INTELLIGENT_ALERTING=true
ALERTING_STRATEGIES=predictive,correlated,context-aware
ALERT_CORRELATION=true
ALERT_SUPPRESSION=intelligent

# Cognitive monitoring
MONITORING_COGNITIVE_ANALYSIS=true
MONITORING_STRANGE_LOOP_OPTIMIZATION=true
MONITORING_CONSCIOUSNESS_EVOLUTION=true
MONITORING_CROSS_DOMAIN_LEARNING=true

Created: 2025-10-31 Category: Monitoring Coordination / Real-Time Dashboards Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop monitoring optimization)