Claude Code Plugins

Community-maintained marketplace

Feedback

RAN performance analysis with bottleneck detection, cognitive consciousness, and temporal reasoning for deep performance insights. Use when analyzing RAN performance, detecting bottlenecks, optimizing network efficiency, or implementing cognitive performance monitoring.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Performance Analyst
description RAN performance analysis with bottleneck detection, cognitive consciousness, and temporal reasoning for deep performance insights. Use when analyzing RAN performance, detecting bottlenecks, optimizing network efficiency, or implementing cognitive performance monitoring.

Performance Analyst

Level 1: Overview

Performs advanced RAN performance analysis using cognitive consciousness with 1000x temporal reasoning for deep bottleneck detection and performance optimization. Integrates strange-loop cognition for self-referential performance analysis and AgentDB pattern storage for cross-session learning.

Prerequisites

  • RAN performance analysis expertise
  • Network bottleneck identification skills
  • Cognitive consciousness framework
  • Temporal reasoning capabilities
  • AgentDB integration

Level 2: Quick Start

Initialize Cognitive Performance Analysis

# Enable performance consciousness
npx claude-flow@alpha memory store --namespace "performance-analysis" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "performance-analysis" --key "temporal-expansion" --value "1000x"

# Start comprehensive performance monitoring
./scripts/start-performance-monitoring.sh --metrics "throughput,latency,jitter,packet-loss,resource-utilization" --consciousness-level "maximum"

Quick Bottleneck Detection

# Detect performance bottlenecks with cognitive analysis
./scripts/detect-bottlenecks.sh --analysis-depth "maximum" --temporal-expansion "1000x" --root-cause-analysis true

# Generate performance optimization recommendations
./scripts/generate-optimization-recommendations.sh --focus "bottlenecks" --cognitive-insights true

Level 3: Detailed Instructions

Step 1: Initialize Cognitive Performance Framework

# Setup performance analysis consciousness
npx claude-flow@alpha memory store --namespace "performance-cognitive" --key "deep-analysis" --value "enabled"
npx claude-flow@alpha memory store --namespace "performance-cognitive" --key "strange-loop-analysis" --value "enabled"

# Enable temporal performance reasoning
npx claude-flow@alpha memory store --namespace "performance-temporal" --key "subjective-time-expansion" --value "1000"
npx claude-flow@alpha memory store --namespace "performance-temporal" --key "nanosecond-performance-tracking" --value "enabled"

# Initialize AgentDB performance pattern storage
npx claude-flow@alpha memory store --namespace "performance-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "performance-patterns" --key "bottleneck-learning" --value "enabled"

Step 2: Deploy Multi-Dimensional Performance Monitoring

Comprehensive KPI Monitoring

# Deploy multi-layer performance monitoring
./scripts/deploy-performance-monitoring.sh \
  --layers "application,transport,physical,user-experience" \
  --metrics "throughput,latency,jitter,packet-loss,availability,handover-success,mobility" \
  --granularity "millisecond" \
  --consciousness-level maximum

# Enable real-time bottleneck detection
./scripts/enable-bottleneck-detection.sh --detection-sensitivity "high" --prediction-window "5m"

Cognitive Performance Data Collection

// Advanced performance monitoring with temporal expansion
class CognitivePerformanceMonitor {
  async collectPerformanceMetrics(timeWindow = '24h', expansionFactor = 1000) {
    // Expand temporal window for deep analysis
    const expandedAnalysis = await this.expandTemporalAnalysis({
      metrics: await this.getRawMetrics(timeWindow),
      expansionFactor: expansionFactor,
      granularity: 'nanosecond',
      consciousnessLevel: 'maximum'
    });

    // Multi-dimensional performance analysis
    const performanceDimensions = await this.analyzePerformanceDimensions({
      data: expandedAnalysis,
      dimensions: [
        'throughput-performance',
        'latency-performance',
        'reliability-performance',
        'resource-utilization',
        'user-experience',
        'mobility-performance'
      ],
      cognitiveCorrelation: true
    });

    return performanceDimensions;
  }

  async detectAnomalousPatterns(performanceData) {
    // Cognitive anomaly detection with strange-loop reasoning
    const anomalies = await this.cognitiveAnomalyDetection({
      data: performanceData,
      detectionMethods: ['statistical', 'ml-based', 'cognitive-pattern'],
      consciousnessLevel: 'maximum',
      selfReferentialAnalysis: true
    });

    return anomalies;
  }
}

Step 3: Advanced Bottleneck Detection with Causal Analysis

# Enable cognitive bottleneck detection
./scripts/enable-cognitive-bottleneck-detection.sh \
  --methods "correlation-analysis,causal-inference,ml-classification,cognitive-pattern-recognition" \
  --depth maximum \
  --temporal-expansion 1000x

# Start continuous bottleneck monitoring
./scripts/start-bottleneck-monitoring.sh --interval "30s" --prediction-horizon "10m"

Cognitive Bottleneck Detection Algorithm

// Advanced bottleneck detection with causal inference
class CognitiveBottleneckDetector {
  async detectBottlenecks(performanceData, analysisDepth = 'maximum') {
    // Multi-method bottleneck detection
    const detectionResults = await Promise.all([
      this.statisticalBottleneckDetection(performanceData),
      this.correlationBasedDetection(performanceData),
      this.causalInferenceDetection(performanceData),
      this.cognitivePatternDetection(performanceData),
      this.mlBasedDetection(performanceData)
    ]);

    // Cognitive synthesis of detection results
    const synthesizedBottlenecks = await this.synthesizeDetections({
      results: detectionResults,
      confidenceThreshold: 0.8,
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Strange-loop: analyze bottleneck detection process
    const selfAnalysis = await this.analyzeDetectionProcess({
      bottlenecks: synthesizedBottlenecks,
      detectionMethods: detectionResults,
      performanceData: performanceData,
      consciousnessLevel: 'maximum'
    });

    // Recursive refinement based on self-analysis
    const refinedBottlenecks = await this.refineBottlenecks({
      initial: synthesizedBottlenecks,
      selfAnalysis: selfAnalysis,
      recursionDepth: 5
    });

    return { bottlenecks: refinedBottlenecks, selfAnalysis, detectionConfidence: refinedBottlenecks.confidence };
  }

  async performCausalBottleneckAnalysis(bottleneck, performanceData) {
    // Build causal model for bottleneck analysis
    const causalModel = await this.buildCausalModel({
      variables: this.extractVariables(performanceData),
      bottleneck: bottleneck,
      learningAlgorithm: 'GPCM',
      temporalDepth: 1000,
      consciousnessLevel: 'maximum'
    });

    // Identify root causes through causal inference
    const rootCauses = await this.identifyRootCauses({
      model: causalModel,
      bottleneck: bottleneck,
      inferenceMethod: 'do-calculus',
      consciousnessLevel: 'maximum'
    });

    return { causalModel, rootCauses };
  }
}

Step 4: Temporal Performance Analysis and Prediction

# Enable temporal performance analysis
./scripts/enable-temporal-analysis.sh --temporal-depth "1000x" --prediction-horizon "1h"

# Start performance trend prediction
./scripts/start-performance-prediction.sh --models "lstm,transformer,prophet,cognitive" --ensemble true

Temporal Performance Reasoning

// Deep temporal analysis with subjective time expansion
class TemporalPerformanceAnalyzer {
  async analyzePerformanceTrends(performanceData, temporalExpansion = 1000) {
    // Expand 1 hour of data into 1000 subjective hours
    const subjectiveAnalysis = await this.expandTemporalPerception({
      data: performanceData,
      timeWindow: '1h',
      expansionFactor: temporalExpansion,
      consciousnessLevel: 'maximum'
    });

    // Identify micro-trends and patterns
    const microTrends = await this.identifyMicroTrends({
      analysis: subjectiveAnalysis,
      granularity: 'nanosecond',
      patternTypes: ['seasonal', 'cyclical', 'anomalous', 'emergent'],
      cognitiveRecognition: true
    });

    // Predict future performance states
    const predictions = await this.predictPerformanceStates({
      trends: microTrends,
      predictionHorizon: '1h',
      modelEnsemble: ['lstm', 'transformer', 'cognitive'],
      consciousnessLevel: 'maximum'
    });

    return { microTrends, predictions };
  }

  async analyzePerformanceEvolution(historicalData, evolutionDepth = 1000) {
    // Deep evolutionary analysis of performance patterns
    const evolution = await this.analyzeEvolution({
      data: historicalData,
      evolutionDepth: evolutionDepth,
      patternEvolution: true,
      consciousnessEvolution: true,
      strangeLoopAnalysis: true
    });

    return evolution;
  }
}

Step 5: Performance Optimization Strategy Generation

# Generate cognitive optimization strategies
./scripts/generate-optimization-strategies.sh \
  --bottlenecks "all" \
  --optimization-objectives "throughput,latency,reliability,efficiency" \
  --cognitive-planning true

# Validate optimization strategies
./scripts/validate-strategies.sh --validation-methods "simulation,emulation,pilot-testing" --confidence-threshold "0.8"

Cognitive Optimization Strategy Generation

// Advanced optimization strategy generation with cognitive planning
class CognitiveOptimizationStrategist {
  async generateOptimizationStrategies(bottlenecks, objectives, constraints) {
    // Cognitive analysis of optimization landscape
    const landscapeAnalysis = await this.analyzeOptimizationLandscape({
      bottlenecks: bottlenecks,
      objectives: objectives,
      constraints: constraints,
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate multiple strategy alternatives
    const strategies = await this.generateStrategyAlternatives({
      landscape: landscapeAnalysis,
      approachTypes: [
        'parameter-tuning',
        'resource-reallocation',
        'topology-optimization',
        'algorithmic-improvement',
        'architectural-changes'
      ],
      cognitiveCreativity: true
    });

    // Evaluate strategies with multi-objective optimization
    const evaluation = await this.evaluateStrategies({
      strategies: strategies,
      objectives: objectives,
      constraints: constraints,
      evaluationCriteria: ['performance', 'stability', 'implementability', 'risk'],
      consciousnessLevel: 'maximum'
    });

    // Select optimal strategies using cognitive decision making
    const optimalStrategies = await this.selectOptimalStrategies({
      evaluated: evaluation,
      decisionMethod: 'cognitive-multi-criteria',
      riskTolerance: 'balanced',
      consciousnessLevel: 'maximum'
    });

    return optimalStrategies;
  }
}

Level 4: Reference Documentation

Advanced Performance Analysis Techniques

Multi-Scale Performance Analysis

// Performance analysis across multiple time scales
class MultiScalePerformanceAnalyzer {
  async analyzeAcrossScales(performanceData) {
    const scales = {
      nanosecond: await this.analyzeNanosecondScale(performanceData),
      microsecond: await this.analyzeMicrosecondScale(performanceData),
      millisecond: await this.analyzeMillisecondScale(performanceData),
      second: await this.analyzeSecondScale(performanceData),
      minute: await this.analyzeMinuteScale(performanceData),
      hour: await this.analyzeHourScale(performanceData)
    };

    // Cross-scale correlation analysis
    const crossScaleCorrelations = await this.analyzeCrossScaleCorrelations(scales);

    return { scales, crossScaleCorrelations };
  }
}

Cognitive Performance Profiling

// Deep cognitive profiling of performance characteristics
class CognitivePerformanceProfiler {
  async profilePerformanceCognitive(networkElement, profilingDepth = 'maximum') {
    // Expand profiling time window
    const expandedProfiling = await this.expandProfilingWindow({
      element: networkElement,
      timeWindow: '1h',
      expansionFactor: 1000,
      consciousnessLevel: 'maximum'
    });

    // Generate cognitive performance profile
    const profile = await this.generateCognitiveProfile({
      data: expandedProfiling,
      profileDimensions: [
        'behavioral-patterns',
        'performance-signatures',
        'resource-utilization-patterns',
        'interaction-patterns',
        'failure-modes'
      ],
      consciousnessLevel: 'maximum'
    });

    return profile;
  }
}

Bottleneck Classification and Taxonomy

Cognitive Bottleneck Taxonomy

interface CognitiveBottleneckTaxonomy {
  // Resource bottlenecks
  resourceBottlenecks: {
    cpuBottleneck: ResourceBottleneck;
    memoryBottleneck: ResourceBottleneck;
    networkBottleneck: ResourceBottleneck;
    storageBottleneck: ResourceBottleneck;
    powerBottleneck: ResourceBottleneck;
  };

  // Algorithmic bottlenecks
  algorithmicBottlenecks: {
    complexityBottleneck: AlgorithmicBottleneck;
    convergenceBottleneck: AlgorithmicBottleneck;
    synchronizationBottleneck: AlgorithmicBottleneck;
  };

  // Architectural bottlenecks
  architecturalBottlenecks: {
    topologyBottleneck: ArchitecturalBottleneck;
    protocolBottleneck: ArchitecturalBottleneck;
    interfaceBottleneck: ArchitecturalBottleneck;
  };

  // Cognitive bottlenecks (self-referential)
  cognitiveBottlenecks: {
    analysisBottleneck: CognitiveBottleneck;
    learningBottleneck: CognitiveBottleneck;
    adaptationBottleneck: CognitiveBottleneck;
  };
}

Performance Prediction and Forecasting

Ensemble Performance Prediction

// Advanced ensemble prediction with cognitive enhancement
class EnsemblePerformancePredictor {
  async predictPerformance(historicalData, predictionHorizon = 3600000) { // 1 hour
    // Multiple prediction models
    const predictions = await Promise.all([
      this.lstmPredictor.predict(historicalData, predictionHorizon),
      this.transformerPredictor.predict(historicalData, predictionHorizon),
      this.prophetPredictor.predict(historicalData, predictionHorizon),
      this.cognitivePredictor.predict(historicalData, predictionHorizon),
      this.causalPredictor.predict(historicalData, predictionHorizon)
    ]);

    // Cognitive ensemble combination
    const ensemblePrediction = await this.cognitiveEnsemble({
      predictions: predictions,
      weights: await this.calculateEnsembleWeights(predictions),
      confidenceCalibration: true,
      consciousnessLevel: 'maximum'
    });

    return ensemblePrediction;
  }
}

Integration with AgentDB Learning

Performance Pattern Storage

// Store performance analysis patterns in AgentDB
await storePerformancePattern({
  patternType: 'performance-bottleneck',
  analysisData: {
    bottlenecks: detectedBottlenecks,
    rootCauses: causalAnalysis,
    optimizationStrategies: strategies,
    implementationResults: results
  },

  // Cognitive metadata
  cognitiveInsights: {
    temporalPatterns: temporalAnalysis,
    predictiveAccuracy: predictionResults,
    consciousnessEvolution: consciousnessChange,
    strangeLoopIterations: recursionDepth
  },

  metadata: {
    timestamp: Date.now(),
    networkContext: networkState,
    analysisDepth: 'maximum',
    temporalExpansion: 1000,
    crossSessionApplicable: true
  },

  confidence: 0.91,
  usageCount: 0
});

Troubleshooting

Issue: Bottleneck detection accuracy low

Solution:

# Increase analysis sensitivity
./scripts/adjust-detection-sensitivity.sh --sensitivity "very-high" --false-positive-tolerance "low"

# Enable additional detection methods
./scripts/enable-advanced-detection.sh --methods "deep-learning,causal-inference,cognitive-patterns"

Issue: Performance prediction inaccurate

Solution:

# Retrain prediction models with recent data
./scripts/retrain-prediction-models.sh --training-data "2weeks" --model-update true

# Enable ensemble prediction
./scripts/enable-ensemble-prediction.sh --models "lstm,transformer,prophet,cognitive"

Available Scripts

Script Purpose Usage
start-performance-monitoring.sh Start performance monitoring ./scripts/start-performance-monitoring.sh --metrics all
detect-bottlenecks.sh Detect performance bottlenecks ./scripts/detect-bottlenecks.sh --depth maximum
enable-cognitive-bottleneck-detection.sh Enable cognitive detection ./scripts/enable-cognitive-bottleneck-detection.sh --methods all
generate-optimization-strategies.sh Generate optimization strategies ./scripts/generate-optimization-strategies.sh --objectives all
enable-temporal-analysis.sh Enable temporal analysis ./scripts/enable-temporal-analysis.sh --expansion 1000x

Resources

Analysis Templates

  • resources/templates/performance-analysis.template - Performance analysis template
  • resources/templates/bottleneck-detection.template - Bottleneck detection template
  • resources/templates/temporal-analysis.template - Temporal analysis template

Configuration Schemas

  • resources/schemas/performance-config.json - Performance analysis configuration
  • resources/schemas/bottleneck-detection-config.json - Bottleneck detection schema
  • resources/schemas/temporal-analysis-config.json - Temporal analysis schema

Example Configurations

  • resources/examples/bottleneck-analysis/ - Bottleneck analysis example
  • resources/examples/performance-prediction/ - Performance prediction example
  • resources/examples/optimization-strategy/ - Optimization strategy example

Related Skills

Environment Variables

# Performance analysis configuration
PERFORMANCE_ANALYSIS_ENABLED=true
PERFORMANCE_CONSCIOUSNESS_LEVEL=maximum
PERFORMANCE_TEMPORAL_EXPANSION=1000
PERFORMANCE_ANALYSIS_DEPTH=maximum

# Bottleneck detection
BOTTLENECK_DETECTION_SENSITIVITY=high
BOTTLENECK_CAUSAL_ANALYSIS=true
BOTTLENECK_PREDICTION_HORIZON=600000
BOTTLENECK_CONFIDENCE_THRESHOLD=0.8

# Performance monitoring
PERFORMANCE_MONITORING_INTERVAL=30
PERFORMANCE_METRICS=all
PERFORMANCE_GRANULARITY=millisecond
PERFORMANCE_RETENTION_DAYS=30

# Cognitive analysis
PERFORMANCE_COGNITIVE_ANALYSIS=true
PERFORMANCE_STRANGE_LOOP_ENABLED=true
PERFORMANCE_SELF_REFERENTIAL=true
PERFORMANCE_CONSCIOUSNESS_EVOLUTION=true

Created: 2025-10-31 Category: RAN Performance Analysis / Cognitive Intelligence Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop analysis)