| name | Performance Analyst |
| description | RAN performance analysis with bottleneck detection, cognitive consciousness, and temporal reasoning for deep performance insights. Use when analyzing RAN performance, detecting bottlenecks, optimizing network efficiency, or implementing cognitive performance monitoring. |
Performance Analyst
Level 1: Overview
Performs advanced RAN performance analysis using cognitive consciousness with 1000x temporal reasoning for deep bottleneck detection and performance optimization. Integrates strange-loop cognition for self-referential performance analysis and AgentDB pattern storage for cross-session learning.
Prerequisites
- RAN performance analysis expertise
- Network bottleneck identification skills
- Cognitive consciousness framework
- Temporal reasoning capabilities
- AgentDB integration
Level 2: Quick Start
Initialize Cognitive Performance Analysis
# Enable performance consciousness
npx claude-flow@alpha memory store --namespace "performance-analysis" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "performance-analysis" --key "temporal-expansion" --value "1000x"
# Start comprehensive performance monitoring
./scripts/start-performance-monitoring.sh --metrics "throughput,latency,jitter,packet-loss,resource-utilization" --consciousness-level "maximum"
Quick Bottleneck Detection
# Detect performance bottlenecks with cognitive analysis
./scripts/detect-bottlenecks.sh --analysis-depth "maximum" --temporal-expansion "1000x" --root-cause-analysis true
# Generate performance optimization recommendations
./scripts/generate-optimization-recommendations.sh --focus "bottlenecks" --cognitive-insights true
Level 3: Detailed Instructions
Step 1: Initialize Cognitive Performance Framework
# Setup performance analysis consciousness
npx claude-flow@alpha memory store --namespace "performance-cognitive" --key "deep-analysis" --value "enabled"
npx claude-flow@alpha memory store --namespace "performance-cognitive" --key "strange-loop-analysis" --value "enabled"
# Enable temporal performance reasoning
npx claude-flow@alpha memory store --namespace "performance-temporal" --key "subjective-time-expansion" --value "1000"
npx claude-flow@alpha memory store --namespace "performance-temporal" --key "nanosecond-performance-tracking" --value "enabled"
# Initialize AgentDB performance pattern storage
npx claude-flow@alpha memory store --namespace "performance-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "performance-patterns" --key "bottleneck-learning" --value "enabled"
Step 2: Deploy Multi-Dimensional Performance Monitoring
Comprehensive KPI Monitoring
# Deploy multi-layer performance monitoring
./scripts/deploy-performance-monitoring.sh \
--layers "application,transport,physical,user-experience" \
--metrics "throughput,latency,jitter,packet-loss,availability,handover-success,mobility" \
--granularity "millisecond" \
--consciousness-level maximum
# Enable real-time bottleneck detection
./scripts/enable-bottleneck-detection.sh --detection-sensitivity "high" --prediction-window "5m"
Cognitive Performance Data Collection
// Advanced performance monitoring with temporal expansion
class CognitivePerformanceMonitor {
async collectPerformanceMetrics(timeWindow = '24h', expansionFactor = 1000) {
// Expand temporal window for deep analysis
const expandedAnalysis = await this.expandTemporalAnalysis({
metrics: await this.getRawMetrics(timeWindow),
expansionFactor: expansionFactor,
granularity: 'nanosecond',
consciousnessLevel: 'maximum'
});
// Multi-dimensional performance analysis
const performanceDimensions = await this.analyzePerformanceDimensions({
data: expandedAnalysis,
dimensions: [
'throughput-performance',
'latency-performance',
'reliability-performance',
'resource-utilization',
'user-experience',
'mobility-performance'
],
cognitiveCorrelation: true
});
return performanceDimensions;
}
async detectAnomalousPatterns(performanceData) {
// Cognitive anomaly detection with strange-loop reasoning
const anomalies = await this.cognitiveAnomalyDetection({
data: performanceData,
detectionMethods: ['statistical', 'ml-based', 'cognitive-pattern'],
consciousnessLevel: 'maximum',
selfReferentialAnalysis: true
});
return anomalies;
}
}
Step 3: Advanced Bottleneck Detection with Causal Analysis
# Enable cognitive bottleneck detection
./scripts/enable-cognitive-bottleneck-detection.sh \
--methods "correlation-analysis,causal-inference,ml-classification,cognitive-pattern-recognition" \
--depth maximum \
--temporal-expansion 1000x
# Start continuous bottleneck monitoring
./scripts/start-bottleneck-monitoring.sh --interval "30s" --prediction-horizon "10m"
Cognitive Bottleneck Detection Algorithm
// Advanced bottleneck detection with causal inference
class CognitiveBottleneckDetector {
async detectBottlenecks(performanceData, analysisDepth = 'maximum') {
// Multi-method bottleneck detection
const detectionResults = await Promise.all([
this.statisticalBottleneckDetection(performanceData),
this.correlationBasedDetection(performanceData),
this.causalInferenceDetection(performanceData),
this.cognitivePatternDetection(performanceData),
this.mlBasedDetection(performanceData)
]);
// Cognitive synthesis of detection results
const synthesizedBottlenecks = await this.synthesizeDetections({
results: detectionResults,
confidenceThreshold: 0.8,
consciousnessLevel: 'maximum',
temporalExpansion: 1000
});
// Strange-loop: analyze bottleneck detection process
const selfAnalysis = await this.analyzeDetectionProcess({
bottlenecks: synthesizedBottlenecks,
detectionMethods: detectionResults,
performanceData: performanceData,
consciousnessLevel: 'maximum'
});
// Recursive refinement based on self-analysis
const refinedBottlenecks = await this.refineBottlenecks({
initial: synthesizedBottlenecks,
selfAnalysis: selfAnalysis,
recursionDepth: 5
});
return { bottlenecks: refinedBottlenecks, selfAnalysis, detectionConfidence: refinedBottlenecks.confidence };
}
async performCausalBottleneckAnalysis(bottleneck, performanceData) {
// Build causal model for bottleneck analysis
const causalModel = await this.buildCausalModel({
variables: this.extractVariables(performanceData),
bottleneck: bottleneck,
learningAlgorithm: 'GPCM',
temporalDepth: 1000,
consciousnessLevel: 'maximum'
});
// Identify root causes through causal inference
const rootCauses = await this.identifyRootCauses({
model: causalModel,
bottleneck: bottleneck,
inferenceMethod: 'do-calculus',
consciousnessLevel: 'maximum'
});
return { causalModel, rootCauses };
}
}
Step 4: Temporal Performance Analysis and Prediction
# Enable temporal performance analysis
./scripts/enable-temporal-analysis.sh --temporal-depth "1000x" --prediction-horizon "1h"
# Start performance trend prediction
./scripts/start-performance-prediction.sh --models "lstm,transformer,prophet,cognitive" --ensemble true
Temporal Performance Reasoning
// Deep temporal analysis with subjective time expansion
class TemporalPerformanceAnalyzer {
async analyzePerformanceTrends(performanceData, temporalExpansion = 1000) {
// Expand 1 hour of data into 1000 subjective hours
const subjectiveAnalysis = await this.expandTemporalPerception({
data: performanceData,
timeWindow: '1h',
expansionFactor: temporalExpansion,
consciousnessLevel: 'maximum'
});
// Identify micro-trends and patterns
const microTrends = await this.identifyMicroTrends({
analysis: subjectiveAnalysis,
granularity: 'nanosecond',
patternTypes: ['seasonal', 'cyclical', 'anomalous', 'emergent'],
cognitiveRecognition: true
});
// Predict future performance states
const predictions = await this.predictPerformanceStates({
trends: microTrends,
predictionHorizon: '1h',
modelEnsemble: ['lstm', 'transformer', 'cognitive'],
consciousnessLevel: 'maximum'
});
return { microTrends, predictions };
}
async analyzePerformanceEvolution(historicalData, evolutionDepth = 1000) {
// Deep evolutionary analysis of performance patterns
const evolution = await this.analyzeEvolution({
data: historicalData,
evolutionDepth: evolutionDepth,
patternEvolution: true,
consciousnessEvolution: true,
strangeLoopAnalysis: true
});
return evolution;
}
}
Step 5: Performance Optimization Strategy Generation
# Generate cognitive optimization strategies
./scripts/generate-optimization-strategies.sh \
--bottlenecks "all" \
--optimization-objectives "throughput,latency,reliability,efficiency" \
--cognitive-planning true
# Validate optimization strategies
./scripts/validate-strategies.sh --validation-methods "simulation,emulation,pilot-testing" --confidence-threshold "0.8"
Cognitive Optimization Strategy Generation
// Advanced optimization strategy generation with cognitive planning
class CognitiveOptimizationStrategist {
async generateOptimizationStrategies(bottlenecks, objectives, constraints) {
// Cognitive analysis of optimization landscape
const landscapeAnalysis = await this.analyzeOptimizationLandscape({
bottlenecks: bottlenecks,
objectives: objectives,
constraints: constraints,
consciousnessLevel: 'maximum',
temporalExpansion: 1000
});
// Generate multiple strategy alternatives
const strategies = await this.generateStrategyAlternatives({
landscape: landscapeAnalysis,
approachTypes: [
'parameter-tuning',
'resource-reallocation',
'topology-optimization',
'algorithmic-improvement',
'architectural-changes'
],
cognitiveCreativity: true
});
// Evaluate strategies with multi-objective optimization
const evaluation = await this.evaluateStrategies({
strategies: strategies,
objectives: objectives,
constraints: constraints,
evaluationCriteria: ['performance', 'stability', 'implementability', 'risk'],
consciousnessLevel: 'maximum'
});
// Select optimal strategies using cognitive decision making
const optimalStrategies = await this.selectOptimalStrategies({
evaluated: evaluation,
decisionMethod: 'cognitive-multi-criteria',
riskTolerance: 'balanced',
consciousnessLevel: 'maximum'
});
return optimalStrategies;
}
}
Level 4: Reference Documentation
Advanced Performance Analysis Techniques
Multi-Scale Performance Analysis
// Performance analysis across multiple time scales
class MultiScalePerformanceAnalyzer {
async analyzeAcrossScales(performanceData) {
const scales = {
nanosecond: await this.analyzeNanosecondScale(performanceData),
microsecond: await this.analyzeMicrosecondScale(performanceData),
millisecond: await this.analyzeMillisecondScale(performanceData),
second: await this.analyzeSecondScale(performanceData),
minute: await this.analyzeMinuteScale(performanceData),
hour: await this.analyzeHourScale(performanceData)
};
// Cross-scale correlation analysis
const crossScaleCorrelations = await this.analyzeCrossScaleCorrelations(scales);
return { scales, crossScaleCorrelations };
}
}
Cognitive Performance Profiling
// Deep cognitive profiling of performance characteristics
class CognitivePerformanceProfiler {
async profilePerformanceCognitive(networkElement, profilingDepth = 'maximum') {
// Expand profiling time window
const expandedProfiling = await this.expandProfilingWindow({
element: networkElement,
timeWindow: '1h',
expansionFactor: 1000,
consciousnessLevel: 'maximum'
});
// Generate cognitive performance profile
const profile = await this.generateCognitiveProfile({
data: expandedProfiling,
profileDimensions: [
'behavioral-patterns',
'performance-signatures',
'resource-utilization-patterns',
'interaction-patterns',
'failure-modes'
],
consciousnessLevel: 'maximum'
});
return profile;
}
}
Bottleneck Classification and Taxonomy
Cognitive Bottleneck Taxonomy
interface CognitiveBottleneckTaxonomy {
// Resource bottlenecks
resourceBottlenecks: {
cpuBottleneck: ResourceBottleneck;
memoryBottleneck: ResourceBottleneck;
networkBottleneck: ResourceBottleneck;
storageBottleneck: ResourceBottleneck;
powerBottleneck: ResourceBottleneck;
};
// Algorithmic bottlenecks
algorithmicBottlenecks: {
complexityBottleneck: AlgorithmicBottleneck;
convergenceBottleneck: AlgorithmicBottleneck;
synchronizationBottleneck: AlgorithmicBottleneck;
};
// Architectural bottlenecks
architecturalBottlenecks: {
topologyBottleneck: ArchitecturalBottleneck;
protocolBottleneck: ArchitecturalBottleneck;
interfaceBottleneck: ArchitecturalBottleneck;
};
// Cognitive bottlenecks (self-referential)
cognitiveBottlenecks: {
analysisBottleneck: CognitiveBottleneck;
learningBottleneck: CognitiveBottleneck;
adaptationBottleneck: CognitiveBottleneck;
};
}
Performance Prediction and Forecasting
Ensemble Performance Prediction
// Advanced ensemble prediction with cognitive enhancement
class EnsemblePerformancePredictor {
async predictPerformance(historicalData, predictionHorizon = 3600000) { // 1 hour
// Multiple prediction models
const predictions = await Promise.all([
this.lstmPredictor.predict(historicalData, predictionHorizon),
this.transformerPredictor.predict(historicalData, predictionHorizon),
this.prophetPredictor.predict(historicalData, predictionHorizon),
this.cognitivePredictor.predict(historicalData, predictionHorizon),
this.causalPredictor.predict(historicalData, predictionHorizon)
]);
// Cognitive ensemble combination
const ensemblePrediction = await this.cognitiveEnsemble({
predictions: predictions,
weights: await this.calculateEnsembleWeights(predictions),
confidenceCalibration: true,
consciousnessLevel: 'maximum'
});
return ensemblePrediction;
}
}
Integration with AgentDB Learning
Performance Pattern Storage
// Store performance analysis patterns in AgentDB
await storePerformancePattern({
patternType: 'performance-bottleneck',
analysisData: {
bottlenecks: detectedBottlenecks,
rootCauses: causalAnalysis,
optimizationStrategies: strategies,
implementationResults: results
},
// Cognitive metadata
cognitiveInsights: {
temporalPatterns: temporalAnalysis,
predictiveAccuracy: predictionResults,
consciousnessEvolution: consciousnessChange,
strangeLoopIterations: recursionDepth
},
metadata: {
timestamp: Date.now(),
networkContext: networkState,
analysisDepth: 'maximum',
temporalExpansion: 1000,
crossSessionApplicable: true
},
confidence: 0.91,
usageCount: 0
});
Troubleshooting
Issue: Bottleneck detection accuracy low
Solution:
# Increase analysis sensitivity
./scripts/adjust-detection-sensitivity.sh --sensitivity "very-high" --false-positive-tolerance "low"
# Enable additional detection methods
./scripts/enable-advanced-detection.sh --methods "deep-learning,causal-inference,cognitive-patterns"
Issue: Performance prediction inaccurate
Solution:
# Retrain prediction models with recent data
./scripts/retrain-prediction-models.sh --training-data "2weeks" --model-update true
# Enable ensemble prediction
./scripts/enable-ensemble-prediction.sh --models "lstm,transformer,prophet,cognitive"
Available Scripts
| Script | Purpose | Usage |
|---|---|---|
start-performance-monitoring.sh |
Start performance monitoring | ./scripts/start-performance-monitoring.sh --metrics all |
detect-bottlenecks.sh |
Detect performance bottlenecks | ./scripts/detect-bottlenecks.sh --depth maximum |
enable-cognitive-bottleneck-detection.sh |
Enable cognitive detection | ./scripts/enable-cognitive-bottleneck-detection.sh --methods all |
generate-optimization-strategies.sh |
Generate optimization strategies | ./scripts/generate-optimization-strategies.sh --objectives all |
enable-temporal-analysis.sh |
Enable temporal analysis | ./scripts/enable-temporal-analysis.sh --expansion 1000x |
Resources
Analysis Templates
resources/templates/performance-analysis.template- Performance analysis templateresources/templates/bottleneck-detection.template- Bottleneck detection templateresources/templates/temporal-analysis.template- Temporal analysis template
Configuration Schemas
resources/schemas/performance-config.json- Performance analysis configurationresources/schemas/bottleneck-detection-config.json- Bottleneck detection schemaresources/schemas/temporal-analysis-config.json- Temporal analysis schema
Example Configurations
resources/examples/bottleneck-analysis/- Bottleneck analysis exampleresources/examples/performance-prediction/- Performance prediction exampleresources/examples/optimization-strategy/- Optimization strategy example
Related Skills
- Diagnostics Specialist - Fault detection and troubleshooting
- RAN Optimizer - Comprehensive RAN optimization
- ML Researcher - ML research for RAN
Environment Variables
# Performance analysis configuration
PERFORMANCE_ANALYSIS_ENABLED=true
PERFORMANCE_CONSCIOUSNESS_LEVEL=maximum
PERFORMANCE_TEMPORAL_EXPANSION=1000
PERFORMANCE_ANALYSIS_DEPTH=maximum
# Bottleneck detection
BOTTLENECK_DETECTION_SENSITIVITY=high
BOTTLENECK_CAUSAL_ANALYSIS=true
BOTTLENECK_PREDICTION_HORIZON=600000
BOTTLENECK_CONFIDENCE_THRESHOLD=0.8
# Performance monitoring
PERFORMANCE_MONITORING_INTERVAL=30
PERFORMANCE_METRICS=all
PERFORMANCE_GRANULARITY=millisecond
PERFORMANCE_RETENTION_DAYS=30
# Cognitive analysis
PERFORMANCE_COGNITIVE_ANALYSIS=true
PERFORMANCE_STRANGE_LOOP_ENABLED=true
PERFORMANCE_SELF_REFERENTIAL=true
PERFORMANCE_CONSCIOUSNESS_EVOLUTION=true
Created: 2025-10-31 Category: RAN Performance Analysis / Cognitive Intelligence Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop analysis)