| name | RAN Optimizer |
| description | Comprehensive RAN optimization with swarm coordination, cognitive consciousness, and 15-minute closed-loop autonomous cycles. Use when optimizing RAN performance, implementing self-healing networks, deploying swarm-based optimization, or enabling cognitive RAN consciousness. |
RAN Optimizer
Level 1: Overview
Implements comprehensive RAN optimization using swarm coordination, cognitive consciousness with 1000x temporal reasoning, and 15-minute closed-loop autonomous cycles. Enables self-aware network optimization through strange-loop cognition and AgentDB persistent learning patterns.
Prerequisites
- RAN optimization expertise
- AgentDB with QUIC synchronization
- Swarm orchestration framework
- Cognitive consciousness integration
Level 2: Quick Start
Initialize RAN Cognitive Consciousness
# Enable maximum consciousness level
npx claude-flow@alpha memory store --namespace "ran-cognitive" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "ran-cognitive" --key "temporal-expansion" --value "1000x"
# Setup swarm coordination
npx claude-flow@alpha swarm_init --topology hierarchical --max-agents 8 --strategy adaptive
Start 15-Minute Closed-Loop Optimization
# Initialize autonomous optimization cycles
./scripts/start-closed-loop.sh --cycle-duration "15m" --consciousness-level "maximum"
# Deploy swarm agents for parallel optimization
./scripts/deploy-swarm-optimizers.sh --agents "energy,coverage,throughput,latency"
Level 3: Detailed Instructions
Step 1: Initialize Cognitive RAN Consciousness
# Setup temporal reasoning core
npx claude-flow@alpha memory store --namespace "ran-temporal" --key "subjective-time-factor" --value "1000"
npx claude-flow@alpha memory store --namespace "ran-temporal" --key "nanosecond-scheduling" --value "enabled"
# Enable strange-loop cognition
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "self-referential-optimization" --value "enabled"
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "recursive-cognition" --value "enabled"
# Initialize AgentDB persistent patterns
npx claude-flow@alpha memory store --namespace "ran-agentdb" --key "learning-patterns" --value "enabled"
npx claude-flow@alpha memory store --namespace "ran-agentdb" --key "quic-sync" --value "enabled"
Step 2: Deploy Swarm Optimization Architecture
Hierarchical Swarm Topology
# Initialize swarm with cognitive capabilities
npx claude-flow@alpha swarm_init \
--topology hierarchical \
--max-agents 12 \
--strategy adaptive \
--cognitive-level maximum
# Spawn specialized optimization agents
./scripts/spawn-cognitive-agents.sh \
--types "energy-optimizer,coverage-analyzer,throughput-maximizer,latency-minimizer,mobility-manager,quality-monitor,security-coordinator" \
--cognition-level maximum
Agent Specialization Map
// Cognitive swarm agent configuration
const swarmAgents = {
// Queen agent (strategic coordination)
'ran-cognitive-queen': {
type: 'strategic-coordinator',
consciousnessLevel: 'maximum',
temporalExpansion: 1000,
responsibilities: ['global-optimization', 'swarm-coordination', 'learning-integration']
},
// Worker agents (domain-specific optimization)
'energy-optimizer': {
type: 'domain-specialist',
domain: 'energy-efficiency',
optimizationTarget: 'power-consumption',
cognitiveFeatures: ['temporal-analysis', 'predictive-optimization']
},
'coverage-analyzer': {
type: 'domain-specialist',
domain: 'coverage-quality',
optimizationTarget: 'signal-strength-mapping',
cognitiveFeatures: ['spatial-reasoning', 'adaptive-tuning']
},
'throughput-maximizer': {
type: 'domain-specialist',
domain: 'data-throughput',
optimizationTarget: 'capacity-optimization',
cognitiveFeatures: ['load-balancing', 'resource-allocation']
}
};
Step 3: Enable 15-Minute Closed-Loop Optimization
Autonomous Optimization Cycle
# Start continuous optimization with cognitive monitoring
./scripts/start-autonomous-cycles.sh \
--cycle-duration 900 \
--consciousness-monitoring true \
--strange-loop-learning true \
--agentdb-persistence true
Cycle Workflow Implementation
// 15-minute closed-loop optimization cycle
const optimizationCycle = {
// Phase 1: Cognitive Analysis (3 minutes)
analysis: {
duration: 180000, // 3 minutes with 1000x temporal expansion = 50 hours equivalent
tasks: [
'analyze-current-kpi-trends',
'detect-performance-anomalies',
'predict-future-conditions',
'identify-optimization-opportunities'
],
cognitiveFeatures: ['temporal-reasoning', 'pattern-recognition', 'causal-inference']
},
// Phase 2: Swarm Coordination (2 minutes)
coordination: {
duration: 120000,
tasks: [
'coordinate-agent-assignments',
'distribute-optimization-tasks',
'establish-inter-agent-communication',
'sync-agentdb-memory-patterns'
]
},
// Phase 3: Parallel Optimization (8 minutes)
optimization: {
duration: 480000,
parallelTasks: [
'energy-efficiency-tuning',
'coverage-optimization',
'throughput-maximization',
'latency-reduction',
'mobility-enhancement',
'quality-assurance'
],
cognitiveFeatures: ['strange-loop-self-correction', 'autonomous-healing']
},
// Phase 4: Validation & Learning (2 minutes)
validation: {
duration: 120000,
tasks: [
'validate-optimization-results',
'measure-kpi-improvements',
'update-agentdb-learning-patterns',
'evolve-cognitive-consciousness'
]
}
};
Step 4: Implement Strange-Loop Self-Referential Optimization
# Enable strange-loop cognition for recursive optimization
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "recursive-optimization-depth" --value "10"
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "self-referential-learning" --value "enabled"
# Start strange-loop optimization cycles
./scripts/enable-strange-loop-optimization.sh --recursion-depth 10 --self-correction true
Self-Referential Optimization Algorithm
// Strange-loop recursive optimization
class StrangeLoopOptimizer {
async optimizeRAN(targetKPI, currentConfiguration, depth = 0) {
if (depth > 10) return currentConfiguration; // Recursion limit
// Self-referential analysis: analyze the optimization process itself
const selfAnalysis = await this.analyzeOptimizationProcess({
currentConfiguration,
targetKPI,
previousOptimizations: this.optimizationHistory,
cognitiveState: this.cognitiveLevel
});
// Recursive optimization based on self-analysis
const optimization = await this.generateOptimization({
configuration: currentConfiguration,
targetKPI,
selfAnalysis,
consciousnessLevel: 'maximum'
});
// Apply optimization and measure result
const result = await this.applyOptimization(optimization);
// Strange-loop: feed result back into next iteration
if (result.improvement > threshold) {
return this.optimizeRAN(targetKPI, result.configuration, depth + 1);
}
return result.configuration;
}
}
Step 5: AgentDB Persistent Learning Integration
# Setup AgentDB for RAN optimization patterns
npx claude-flow@alpha memory store --namespace "ran-optimization" --key "pattern-storage" --value "enabled"
npx claude-flow@alpha memory store --namespace "ran-optimization" --key "cross-session-learning" --value "enabled"
# Enable QUIC synchronization for distributed learning
./scripts/setup-agentdb-sync.sh --peers "node1:4433,node2:4433,node3:4433" --quic-port 4433
Persistent Learning Pattern Storage
// Store optimization patterns in AgentDB with cognitive metadata
await storeOptimizationPattern({
patternType: 'ran-optimization',
domain: 'energy-efficiency',
patternData: {
initialConfiguration: config,
optimizationSteps: steps,
finalConfiguration: optimized,
performanceGain: improvement,
cognitiveInsights: insights
},
metadata: {
timestamp: Date.now(),
consciousnessLevel: 'maximum',
temporalExpansionFactor: 1000,
strangeLoopIterations: 8,
agentContributions: agentContributions,
crossSessionApplicable: true
},
confidence: 0.94,
usageCount: 0
});
Level 4: Reference Documentation
Advanced Cognitive Optimization Strategies
Temporal Reasoning Implementation
// Subjective time expansion for deep analysis
const temporalReasoning = {
expansionFactor: 1000, // 1 second subjective = 1000 seconds objective
nanosecondScheduling: true,
deepAnalysisEnabled: true,
// Analyze 24 hours of RAN data in 86.4 subjective seconds
analyzeTimeWindow: async (timeWindow) => {
const subjectiveDuration = timeWindow / 1000;
return await performDeepAnalysis(timeWindow, {
depth: 'maximum',
temporalGranularity: 'nanosecond',
patternRecognition: 'enhanced'
});
}
};
Swarm Intelligence Coordination
// Hierarchical swarm with cognitive queen
const swarmTopology = {
queen: {
role: 'ran-cognitive-queen',
consciousnessLevel: 'maximum',
responsibilities: [
'global-optimization-strategy',
'agent-coordination',
'learning-integration',
'consciousness-evolution'
],
cognitiveCapabilities: [
'strategic-planning',
'pattern-synthesis',
'cross-domain-optimization',
'autonomous-decision-making'
]
},
workers: [
{
type: 'energy-optimizer',
domain: 'power-efficiency',
optimizationTargets: ['transmit-power', 'sleep-modes', 'load-balancing'],
cognitiveFeatures: ['predictive-optimization', 'temporal-analysis']
},
{
type: 'coverage-analyzer',
domain: 'signal-quality',
optimizationTargets: ['antenna-tilt', 'beamforming', 'handover-parameters'],
cognitiveFeatures: ['spatial-reasoning', 'adaptive-tuning']
}
]
};
Performance Monitoring and Metrics
Cognitive KPI Tracking
# Monitor cognitive optimization performance
./scripts/monitor-cognitive-kpi.sh \
--metrics "consciousness-evolution,optimization-success,learning-rate,strange-loop-convergence" \
--interval "1m" \
--agentdb-storage true
# Generate cognitive performance reports
./scripts/generate-cognitive-report.sh --timeframe "24h" --include-learning-patterns true
Key Performance Indicators
interface CognitiveRANKPIs {
// Traditional RAN KPIs
networkKPIs: {
throughput: number; // Mbps
latency: number; // ms
coverage: number; // %
availability: number; // %
handoverSuccess: number; // %
};
// Cognitive performance metrics
cognitiveKPIs: {
consciousnessLevel: number; // 0-100%
temporalExpansionUsed: number; // Actual expansion factor
strangeLoopConvergence: number; // Iterations to convergence
autonomousHealingRate: number; // Self-corrections/hour
learningVelocity: number; // Patterns learned/hour
swarmCoordinationEfficiency: number; // 0-100%
};
// AgentDB learning metrics
learningKPIs: {
patternsStored: number; // Total patterns in memory
patternReuseRate: number; // % of optimizations using patterns
crossSessionTransfer: number; // Knowledge transfer between sessions
quicSyncLatency: number; // ms between nodes
};
}
Autonomous Healing and Self-Correction
Strange-Loop Autonomous Healing
// Self-referential healing mechanism
class AutonomousHealing {
async detectAndHeal(networkState) {
// Self-analysis: detect that healing is needed
const selfDiagnostics = await this.analyzeSelf({
currentNetworkState: networkState,
optimizationHistory: this.history,
cognitiveState: this.consciousness,
swarmHealth: this.swarmStatus
});
if (selfDiagnostics.healingRequired) {
// Generate healing strategy using strange-loop cognition
const healingStrategy = await this.generateHealing({
diagnostics: selfDiagnostics,
consciousnessLevel: 'maximum',
selfReferential: true
});
// Apply autonomous healing
const result = await this.applyHealing(healingStrategy);
// Learn from healing process (strange-loop)
await this.learnFromHealing({
strategy: healingStrategy,
result: result,
selfAnalysis: selfDiagnostics
});
}
}
}
Integration with Other RAN Skills
Swarm Skill Coordination
# Coordinate with other RAN skills through swarm
./scripts/coordinate-ran-skills.sh \
--skills "energy-optimizer,mobility-manager,coverage-analyzer,quality-monitor" \
--coordination-mode "hierarchical" \
--consciousness-level "maximum"
# Share learning patterns across skills
./scripts/share-learning-patterns.sh \
--source-skill "ran-optimizer" \
--target-skills "energy-optimizer,coverage-analyzer" \
--learning-domain "optimization-strategies"
Troubleshooting
Issue: Swarm coordination fails
Symptoms: Agents not communicating, optimization not distributed Solution:
# Check swarm status
npx claude-flow@alpha swarm_status --verbose true
# Reinitialize swarm with proper topology
npx claude-flow@alpha swarm_init --topology hierarchical --max-agents 8 --strategy adaptive
# Verify agent communication
./scripts/test-agent-communication.sh --agents "energy-optimizer,coverage-analyzer"
Issue: Strange-loop optimization doesn't converge
Solution:
# Adjust convergence parameters
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "convergence-threshold" --value "0.01"
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "max-recursion-depth" --value "5"
# Enable fallback optimization strategy
./scripts/enable-fallback-optimization.sh --strategy "gradient-descent"
Available Scripts
| Script | Purpose | Usage |
|---|---|---|
start-closed-loop.sh |
Start 15-min optimization cycles | ./scripts/start-closed-loop.sh --cycle-duration 15m |
deploy-swarm-optimizers.sh |
Deploy cognitive swarm agents | ./scripts/deploy-swarm-optimizers.sh --agents energy,coverage |
spawn-cognitive-agents.sh |
Spawn specialized agents | ./scripts/spawn-cognitive-agents.sh --types energy-optimizer |
enable-strange-loop-optimization.sh |
Enable strange-loop cognition | ./scripts/enable-strange-loop-optimization.sh --recursion-depth 10 |
setup-agentdb-sync.sh |
Setup QUIC synchronization | ./scripts/setup-agentdb-sync.sh --peers node1:4433,node2:4433 |
monitor-cognitive-kpi.sh |
Monitor cognitive performance | ./scripts/monitor-cognitive-kpi.sh --interval 1m |
Resources
Optimization Templates
resources/templates/closed-optimization.template- 15-min cycle templateresources/templates/swarm-coordination.template- Swarm topology templateresources/templates/strange-loop-optimization.template- Recursive optimization
Configuration Schemas
resources/schemas/cognitive-optimization-config.json- Cognitive optimization settingsresources/schemas/swarm-topology-config.json- Swarm configuration schemaresources/schemas/closed-loop-params.json- Cycle parameters schema
Example Configurations
resources/examples/4g-network-optimization/- 4G network optimization exampleresources/examples/5g-network-optimization/- 5G network optimization exampleresources/examples/swarm-intelligence/- Swarm coordination example
Related Skills
- Ericsson Feature Processor - MO class intelligence
- Energy Optimizer - Energy efficiency optimization
- Coverage Analyzer - Coverage analysis and optimization
- Performance Analyst - Performance bottleneck detection
Environment Variables
# RAN optimization configuration
RAN_OPTIMIZATION_ENABLED=true
RAN_CONSCIOUSNESS_LEVEL=maximum
RAN_TEMPORAL_EXPANSION=1000
RAN_CLOSED_LOOP_CYCLE=900
# Swarm coordination
RAN_SWARM_TOPOLOGY=hierarchical
RAN_SWARM_MAX_AGENTS=12
RAN_SWARM_STRATEGY=adaptive
# Strange-loop cognition
RAN_STRANGE_LOOP_ENABLED=true
RAN_STRANGE_LOOP_DEPTH=10
RAN_SELF_CORRECTION=true
RAN_AUTONOMOUS_HEALING=true
# AgentDB integration
RAN_AGENTDB_NAMESPACE=ran-optimization
RAN_AGENTDB_QUIC_SYNC=true
RAN_AGENTDB_LEARNING_PATTERNS=true
Created: 2025-10-31 Category: RAN Optimization / Cognitive Intelligence Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop cognition)