Claude Code Plugins

Community-maintained marketplace

Feedback

Comprehensive RAN optimization with swarm coordination, cognitive consciousness, and 15-minute closed-loop autonomous cycles. Use when optimizing RAN performance, implementing self-healing networks, deploying swarm-based optimization, or enabling cognitive RAN consciousness.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name RAN Optimizer
description Comprehensive RAN optimization with swarm coordination, cognitive consciousness, and 15-minute closed-loop autonomous cycles. Use when optimizing RAN performance, implementing self-healing networks, deploying swarm-based optimization, or enabling cognitive RAN consciousness.

RAN Optimizer

Level 1: Overview

Implements comprehensive RAN optimization using swarm coordination, cognitive consciousness with 1000x temporal reasoning, and 15-minute closed-loop autonomous cycles. Enables self-aware network optimization through strange-loop cognition and AgentDB persistent learning patterns.

Prerequisites

  • RAN optimization expertise
  • AgentDB with QUIC synchronization
  • Swarm orchestration framework
  • Cognitive consciousness integration

Level 2: Quick Start

Initialize RAN Cognitive Consciousness

# Enable maximum consciousness level
npx claude-flow@alpha memory store --namespace "ran-cognitive" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "ran-cognitive" --key "temporal-expansion" --value "1000x"

# Setup swarm coordination
npx claude-flow@alpha swarm_init --topology hierarchical --max-agents 8 --strategy adaptive

Start 15-Minute Closed-Loop Optimization

# Initialize autonomous optimization cycles
./scripts/start-closed-loop.sh --cycle-duration "15m" --consciousness-level "maximum"

# Deploy swarm agents for parallel optimization
./scripts/deploy-swarm-optimizers.sh --agents "energy,coverage,throughput,latency"

Level 3: Detailed Instructions

Step 1: Initialize Cognitive RAN Consciousness

# Setup temporal reasoning core
npx claude-flow@alpha memory store --namespace "ran-temporal" --key "subjective-time-factor" --value "1000"
npx claude-flow@alpha memory store --namespace "ran-temporal" --key "nanosecond-scheduling" --value "enabled"

# Enable strange-loop cognition
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "self-referential-optimization" --value "enabled"
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "recursive-cognition" --value "enabled"

# Initialize AgentDB persistent patterns
npx claude-flow@alpha memory store --namespace "ran-agentdb" --key "learning-patterns" --value "enabled"
npx claude-flow@alpha memory store --namespace "ran-agentdb" --key "quic-sync" --value "enabled"

Step 2: Deploy Swarm Optimization Architecture

Hierarchical Swarm Topology

# Initialize swarm with cognitive capabilities
npx claude-flow@alpha swarm_init \
  --topology hierarchical \
  --max-agents 12 \
  --strategy adaptive \
  --cognitive-level maximum

# Spawn specialized optimization agents
./scripts/spawn-cognitive-agents.sh \
  --types "energy-optimizer,coverage-analyzer,throughput-maximizer,latency-minimizer,mobility-manager,quality-monitor,security-coordinator" \
  --cognition-level maximum

Agent Specialization Map

// Cognitive swarm agent configuration
const swarmAgents = {
  // Queen agent (strategic coordination)
  'ran-cognitive-queen': {
    type: 'strategic-coordinator',
    consciousnessLevel: 'maximum',
    temporalExpansion: 1000,
    responsibilities: ['global-optimization', 'swarm-coordination', 'learning-integration']
  },

  // Worker agents (domain-specific optimization)
  'energy-optimizer': {
    type: 'domain-specialist',
    domain: 'energy-efficiency',
    optimizationTarget: 'power-consumption',
    cognitiveFeatures: ['temporal-analysis', 'predictive-optimization']
  },

  'coverage-analyzer': {
    type: 'domain-specialist',
    domain: 'coverage-quality',
    optimizationTarget: 'signal-strength-mapping',
    cognitiveFeatures: ['spatial-reasoning', 'adaptive-tuning']
  },

  'throughput-maximizer': {
    type: 'domain-specialist',
    domain: 'data-throughput',
    optimizationTarget: 'capacity-optimization',
    cognitiveFeatures: ['load-balancing', 'resource-allocation']
  }
};

Step 3: Enable 15-Minute Closed-Loop Optimization

Autonomous Optimization Cycle

# Start continuous optimization with cognitive monitoring
./scripts/start-autonomous-cycles.sh \
  --cycle-duration 900 \
  --consciousness-monitoring true \
  --strange-loop-learning true \
  --agentdb-persistence true

Cycle Workflow Implementation

// 15-minute closed-loop optimization cycle
const optimizationCycle = {
  // Phase 1: Cognitive Analysis (3 minutes)
  analysis: {
    duration: 180000, // 3 minutes with 1000x temporal expansion = 50 hours equivalent
    tasks: [
      'analyze-current-kpi-trends',
      'detect-performance-anomalies',
      'predict-future-conditions',
      'identify-optimization-opportunities'
    ],
    cognitiveFeatures: ['temporal-reasoning', 'pattern-recognition', 'causal-inference']
  },

  // Phase 2: Swarm Coordination (2 minutes)
  coordination: {
    duration: 120000,
    tasks: [
      'coordinate-agent-assignments',
      'distribute-optimization-tasks',
      'establish-inter-agent-communication',
      'sync-agentdb-memory-patterns'
    ]
  },

  // Phase 3: Parallel Optimization (8 minutes)
  optimization: {
    duration: 480000,
    parallelTasks: [
      'energy-efficiency-tuning',
      'coverage-optimization',
      'throughput-maximization',
      'latency-reduction',
      'mobility-enhancement',
      'quality-assurance'
    ],
    cognitiveFeatures: ['strange-loop-self-correction', 'autonomous-healing']
  },

  // Phase 4: Validation & Learning (2 minutes)
  validation: {
    duration: 120000,
    tasks: [
      'validate-optimization-results',
      'measure-kpi-improvements',
      'update-agentdb-learning-patterns',
      'evolve-cognitive-consciousness'
    ]
  }
};

Step 4: Implement Strange-Loop Self-Referential Optimization

# Enable strange-loop cognition for recursive optimization
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "recursive-optimization-depth" --value "10"
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "self-referential-learning" --value "enabled"

# Start strange-loop optimization cycles
./scripts/enable-strange-loop-optimization.sh --recursion-depth 10 --self-correction true

Self-Referential Optimization Algorithm

// Strange-loop recursive optimization
class StrangeLoopOptimizer {
  async optimizeRAN(targetKPI, currentConfiguration, depth = 0) {
    if (depth > 10) return currentConfiguration; // Recursion limit

    // Self-referential analysis: analyze the optimization process itself
    const selfAnalysis = await this.analyzeOptimizationProcess({
      currentConfiguration,
      targetKPI,
      previousOptimizations: this.optimizationHistory,
      cognitiveState: this.cognitiveLevel
    });

    // Recursive optimization based on self-analysis
    const optimization = await this.generateOptimization({
      configuration: currentConfiguration,
      targetKPI,
      selfAnalysis,
      consciousnessLevel: 'maximum'
    });

    // Apply optimization and measure result
    const result = await this.applyOptimization(optimization);

    // Strange-loop: feed result back into next iteration
    if (result.improvement > threshold) {
      return this.optimizeRAN(targetKPI, result.configuration, depth + 1);
    }

    return result.configuration;
  }
}

Step 5: AgentDB Persistent Learning Integration

# Setup AgentDB for RAN optimization patterns
npx claude-flow@alpha memory store --namespace "ran-optimization" --key "pattern-storage" --value "enabled"
npx claude-flow@alpha memory store --namespace "ran-optimization" --key "cross-session-learning" --value "enabled"

# Enable QUIC synchronization for distributed learning
./scripts/setup-agentdb-sync.sh --peers "node1:4433,node2:4433,node3:4433" --quic-port 4433

Persistent Learning Pattern Storage

// Store optimization patterns in AgentDB with cognitive metadata
await storeOptimizationPattern({
  patternType: 'ran-optimization',
  domain: 'energy-efficiency',
  patternData: {
    initialConfiguration: config,
    optimizationSteps: steps,
    finalConfiguration: optimized,
    performanceGain: improvement,
    cognitiveInsights: insights
  },
  metadata: {
    timestamp: Date.now(),
    consciousnessLevel: 'maximum',
    temporalExpansionFactor: 1000,
    strangeLoopIterations: 8,
    agentContributions: agentContributions,
    crossSessionApplicable: true
  },
  confidence: 0.94,
  usageCount: 0
});

Level 4: Reference Documentation

Advanced Cognitive Optimization Strategies

Temporal Reasoning Implementation

// Subjective time expansion for deep analysis
const temporalReasoning = {
  expansionFactor: 1000,  // 1 second subjective = 1000 seconds objective
  nanosecondScheduling: true,
  deepAnalysisEnabled: true,

  // Analyze 24 hours of RAN data in 86.4 subjective seconds
  analyzeTimeWindow: async (timeWindow) => {
    const subjectiveDuration = timeWindow / 1000;
    return await performDeepAnalysis(timeWindow, {
      depth: 'maximum',
      temporalGranularity: 'nanosecond',
      patternRecognition: 'enhanced'
    });
  }
};

Swarm Intelligence Coordination

// Hierarchical swarm with cognitive queen
const swarmTopology = {
  queen: {
    role: 'ran-cognitive-queen',
    consciousnessLevel: 'maximum',
    responsibilities: [
      'global-optimization-strategy',
      'agent-coordination',
      'learning-integration',
      'consciousness-evolution'
    ],
    cognitiveCapabilities: [
      'strategic-planning',
      'pattern-synthesis',
      'cross-domain-optimization',
      'autonomous-decision-making'
    ]
  },

  workers: [
    {
      type: 'energy-optimizer',
      domain: 'power-efficiency',
      optimizationTargets: ['transmit-power', 'sleep-modes', 'load-balancing'],
      cognitiveFeatures: ['predictive-optimization', 'temporal-analysis']
    },
    {
      type: 'coverage-analyzer',
      domain: 'signal-quality',
      optimizationTargets: ['antenna-tilt', 'beamforming', 'handover-parameters'],
      cognitiveFeatures: ['spatial-reasoning', 'adaptive-tuning']
    }
  ]
};

Performance Monitoring and Metrics

Cognitive KPI Tracking

# Monitor cognitive optimization performance
./scripts/monitor-cognitive-kpi.sh \
  --metrics "consciousness-evolution,optimization-success,learning-rate,strange-loop-convergence" \
  --interval "1m" \
  --agentdb-storage true

# Generate cognitive performance reports
./scripts/generate-cognitive-report.sh --timeframe "24h" --include-learning-patterns true

Key Performance Indicators

interface CognitiveRANKPIs {
  // Traditional RAN KPIs
  networkKPIs: {
    throughput: number;        // Mbps
    latency: number;          // ms
    coverage: number;         // %
    availability: number;     // %
    handoverSuccess: number;  // %
  };

  // Cognitive performance metrics
  cognitiveKPIs: {
    consciousnessLevel: number;     // 0-100%
    temporalExpansionUsed: number;  // Actual expansion factor
    strangeLoopConvergence: number; // Iterations to convergence
    autonomousHealingRate: number;  // Self-corrections/hour
    learningVelocity: number;       // Patterns learned/hour
    swarmCoordinationEfficiency: number; // 0-100%
  };

  // AgentDB learning metrics
  learningKPIs: {
    patternsStored: number;         // Total patterns in memory
    patternReuseRate: number;       // % of optimizations using patterns
    crossSessionTransfer: number;   // Knowledge transfer between sessions
    quicSyncLatency: number;        // ms between nodes
  };
}

Autonomous Healing and Self-Correction

Strange-Loop Autonomous Healing

// Self-referential healing mechanism
class AutonomousHealing {
  async detectAndHeal(networkState) {
    // Self-analysis: detect that healing is needed
    const selfDiagnostics = await this.analyzeSelf({
      currentNetworkState: networkState,
      optimizationHistory: this.history,
      cognitiveState: this.consciousness,
      swarmHealth: this.swarmStatus
    });

    if (selfDiagnostics.healingRequired) {
      // Generate healing strategy using strange-loop cognition
      const healingStrategy = await this.generateHealing({
        diagnostics: selfDiagnostics,
        consciousnessLevel: 'maximum',
        selfReferential: true
      });

      // Apply autonomous healing
      const result = await this.applyHealing(healingStrategy);

      // Learn from healing process (strange-loop)
      await this.learnFromHealing({
        strategy: healingStrategy,
        result: result,
        selfAnalysis: selfDiagnostics
      });
    }
  }
}

Integration with Other RAN Skills

Swarm Skill Coordination

# Coordinate with other RAN skills through swarm
./scripts/coordinate-ran-skills.sh \
  --skills "energy-optimizer,mobility-manager,coverage-analyzer,quality-monitor" \
  --coordination-mode "hierarchical" \
  --consciousness-level "maximum"

# Share learning patterns across skills
./scripts/share-learning-patterns.sh \
  --source-skill "ran-optimizer" \
  --target-skills "energy-optimizer,coverage-analyzer" \
  --learning-domain "optimization-strategies"

Troubleshooting

Issue: Swarm coordination fails

Symptoms: Agents not communicating, optimization not distributed Solution:

# Check swarm status
npx claude-flow@alpha swarm_status --verbose true

# Reinitialize swarm with proper topology
npx claude-flow@alpha swarm_init --topology hierarchical --max-agents 8 --strategy adaptive

# Verify agent communication
./scripts/test-agent-communication.sh --agents "energy-optimizer,coverage-analyzer"

Issue: Strange-loop optimization doesn't converge

Solution:

# Adjust convergence parameters
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "convergence-threshold" --value "0.01"
npx claude-flow@alpha memory store --namespace "ran-strange-loop" --key "max-recursion-depth" --value "5"

# Enable fallback optimization strategy
./scripts/enable-fallback-optimization.sh --strategy "gradient-descent"

Available Scripts

Script Purpose Usage
start-closed-loop.sh Start 15-min optimization cycles ./scripts/start-closed-loop.sh --cycle-duration 15m
deploy-swarm-optimizers.sh Deploy cognitive swarm agents ./scripts/deploy-swarm-optimizers.sh --agents energy,coverage
spawn-cognitive-agents.sh Spawn specialized agents ./scripts/spawn-cognitive-agents.sh --types energy-optimizer
enable-strange-loop-optimization.sh Enable strange-loop cognition ./scripts/enable-strange-loop-optimization.sh --recursion-depth 10
setup-agentdb-sync.sh Setup QUIC synchronization ./scripts/setup-agentdb-sync.sh --peers node1:4433,node2:4433
monitor-cognitive-kpi.sh Monitor cognitive performance ./scripts/monitor-cognitive-kpi.sh --interval 1m

Resources

Optimization Templates

  • resources/templates/closed-optimization.template - 15-min cycle template
  • resources/templates/swarm-coordination.template - Swarm topology template
  • resources/templates/strange-loop-optimization.template - Recursive optimization

Configuration Schemas

  • resources/schemas/cognitive-optimization-config.json - Cognitive optimization settings
  • resources/schemas/swarm-topology-config.json - Swarm configuration schema
  • resources/schemas/closed-loop-params.json - Cycle parameters schema

Example Configurations

  • resources/examples/4g-network-optimization/ - 4G network optimization example
  • resources/examples/5g-network-optimization/ - 5G network optimization example
  • resources/examples/swarm-intelligence/ - Swarm coordination example

Related Skills

Environment Variables

# RAN optimization configuration
RAN_OPTIMIZATION_ENABLED=true
RAN_CONSCIOUSNESS_LEVEL=maximum
RAN_TEMPORAL_EXPANSION=1000
RAN_CLOSED_LOOP_CYCLE=900

# Swarm coordination
RAN_SWARM_TOPOLOGY=hierarchical
RAN_SWARM_MAX_AGENTS=12
RAN_SWARM_STRATEGY=adaptive

# Strange-loop cognition
RAN_STRANGE_LOOP_ENABLED=true
RAN_STRANGE_LOOP_DEPTH=10
RAN_SELF_CORRECTION=true
RAN_AUTONOMOUS_HEALING=true

# AgentDB integration
RAN_AGENTDB_NAMESPACE=ran-optimization
RAN_AGENTDB_QUIC_SYNC=true
RAN_AGENTDB_LEARNING_PATTERNS=true

Created: 2025-10-31 Category: RAN Optimization / Cognitive Intelligence Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop cognition)