| name | gemini-audio |
| description | Guide for implementing Google Gemini API audio capabilities - analyze audio with transcription, summarization, and understanding (up to 9.5 hours), plus generate speech with controllable TTS. Use when processing audio files, creating transcripts, analyzing speech/music/sounds, or generating natural speech from text. |
| license | MIT |
| allowed-tools | Bash, Read, Write, Edit |
Gemini Audio API Skill
Process audio with transcription, analysis, and understanding, plus generate natural speech using Google's Gemini API. Supports up to 9.5 hours of audio per request with multiple formats.
When to Use This Skill
Use this skill when you need to:
- Transcribe audio files to text with timestamps
- Summarize audio content and extract key points
- Analyze speech, music, or environmental sounds
- Generate speech from text with controllable voice and style
- Process podcasts, interviews, meetings, or any audio content
- Understand non-speech audio (birdsong, sirens, music)
Prerequisites
API Key Setup
The skill automatically detects your GEMINI_API_KEY in this order:
- Process environment:
export GEMINI_API_KEY="your-key" - Skill directory:
.claude/skills/gemini-audio/.env - Project directory:
./.env(project root)
Get your API key: Visit Google AI Studio
Create .env file with:
GEMINI_API_KEY=your_api_key_here
Python Setup
Install required package:
pip install google-genai
Quick Start
Audio Analysis (Transcription, Summarization)
from google import genai
import os
# API key auto-detected from environment
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
# Upload audio file
myfile = client.files.upload(file='podcast.mp3')
# Transcribe
response = client.models.generate_content(
model='gemini-2.5-flash',
contents=['Generate a transcript of the speech.', myfile]
)
print(response.text)
# Summarize
response = client.models.generate_content(
model='gemini-2.5-flash',
contents=['Summarize the key points in 5 bullets.', myfile]
)
print(response.text)
Using Helper Scripts
# Transcribe audio
python .claude/skills/gemini-audio/scripts/transcribe.py audio.mp3
# Summarize audio
python .claude/skills/gemini-audio/scripts/analyze.py audio.mp3 \
"Summarize key points"
# Analyze specific segment (timestamps in MM:SS format)
python .claude/skills/gemini-audio/scripts/analyze.py audio.mp3 \
"What is discussed from 02:30 to 05:15?"
# Generate speech
python .claude/skills/gemini-audio/scripts/generate-speech.py \
"Welcome to our podcast" \
--output welcome.wav
Audio Understanding Capabilities
Supported Formats
| Format | MIME Type | Best Use |
|---|---|---|
| WAV | audio/wav |
Uncompressed, highest quality |
| MP3 | audio/mp3 |
Compressed, widely compatible |
| AAC | audio/aac |
Compressed, good quality |
| FLAC | audio/flac |
Lossless compression |
| OGG Vorbis | audio/ogg |
Open format |
| AIFF | audio/aiff |
Apple format |
Audio Specifications
- Maximum length: 9.5 hours per request
- Multiple files: Unlimited count, combined max 9.5 hours
- Token rate: 32 tokens/second (1 minute = 1,920 tokens)
- Processing: Auto-downsampled to 16 Kbps mono
- File size limits:
- Inline: 20 MB max total request
- File API: 2 GB per file, 20 GB project quota
- Retention: 48 hours auto-delete
Analysis Features
- Transcription: Full text with punctuation
- Timestamps: Reference segments (MM:SS format)
- Multi-speaker: Identify different speakers
- Non-speech: Analyze music, sounds, ambient audio
- Languages: Support for multiple languages
Speech Generation (TTS)
Available TTS Models
| Model | Quality | Speed | Cost/1M tokens |
|---|---|---|---|
gemini-2.5-flash-native-audio-preview-09-2025 |
High | Fast | $10 |
gemini-2.5-pro TTS mode |
Premium | Slower | $20 |
Controllable Voice Options
- Style: Professional, casual, narrative, conversational
- Pace: Slow, normal, fast
- Tone: Friendly, serious, enthusiastic
- Accent: Natural language control
TTS Example
response = client.models.generate_content(
model='gemini-2.5-flash-native-audio-preview-09-2025',
contents='Generate audio: Welcome to today\'s episode, in a warm, friendly tone.'
)
# Save audio output
with open('output.wav', 'wb') as f:
f.write(response.audio_data)
Input Methods
Method 1: File Upload (Recommended for >20MB)
# Upload and reuse
myfile = client.files.upload(file='large-audio.mp3')
# Use file multiple times
response1 = client.models.generate_content(
model='gemini-2.5-flash',
contents=['Transcribe this', myfile]
)
response2 = client.models.generate_content(
model='gemini-2.5-flash',
contents=['Summarize this', myfile]
)
Method 2: Inline Data (<20MB)
from google.genai import types
with open('small-audio.mp3', 'rb') as f:
audio_bytes = f.read()
response = client.models.generate_content(
model='gemini-2.5-flash',
contents=[
'Describe this audio',
types.Part.from_bytes(data=audio_bytes, mime_type='audio/mp3')
]
)
Common Use Cases
Transcription
python scripts/transcribe.py meeting.mp3 --include-timestamps
Summary with Key Points
python scripts/analyze.py interview.wav "Extract main topics and key quotes"
Speaker Identification
python scripts/analyze.py discussion.mp3 "Identify speakers and extract dialogue"
Segment Analysis
python scripts/analyze.py podcast.mp3 "Summarize content from 10:30 to 15:45"
Non-Speech Analysis
python scripts/analyze.py ambient.wav "Identify all sounds: voices, music, ambient"
Best Practices
File Management
- Use File API for files >20MB or repeated usage
- Files auto-delete after 48 hours
- Manage quota (20 GB project limit)
Prompt Engineering
- Be specific: "Transcribe from 02:30 to 03:29"
- Use timestamps for segment analysis (MM:SS format)
- Combine tasks: "Transcribe and summarize"
- Provide context: "This is a medical interview"
Cost Optimization
- Use
gemini-2.5-flash($1/1M tokens) for most tasks - Upgrade to
gemini-2.5-pro($3/1M tokens) for complex analysis - Check token count: 1 min audio = 1,920 tokens
Error Handling
- Validate file format and size before upload
- Implement exponential backoff for rate limits
- Handle 48-hour file expiration
Token Costs & Pricing
Audio Input (32 tokens/second):
- 1 minute = 1,920 tokens
- 1 hour = 115,200 tokens
- 9.5 hours = 1,094,400 tokens
Model Pricing:
- Gemini 2.5 Flash: $1.00/1M input, $0.10/1M output
- Gemini 2.5 Pro: $3.00/1M input, $12.00/1M output
- Gemini 1.5 Flash: $0.70/1M input, $0.175/1M output
TTS Pricing:
- Flash TTS: $10/1M tokens
- Pro TTS: $20/1M tokens
Reference Documentation
For detailed information, see:
references/api-reference.md- Complete API specificationsreferences/code-examples.md- Comprehensive code examplesreferences/tts-guide.md- Text-to-speech implementation guidereferences/best-practices.md- Advanced optimization strategies
Scripts Overview
All scripts support 3-step API key detection:
- transcribe.py: Generate transcripts with optional timestamps
- analyze.py: General audio analysis with custom prompts
- generate-speech.py: Text-to-speech generation
- manage-files.py: Upload, list, and delete audio files
Run any script with --help for detailed usage.