| name | deepeval |
| description | Use when discussing or working with DeepEval (the python AI evaluation framework) |
DeepEval
Overview
DeepEval is a pytest-based framework for testing LLM applications. It provides 50+ evaluation metrics covering RAG pipelines, conversational AI, agents, safety, and custom criteria. DeepEval integrates into development workflows through pytest, supports multiple LLM providers, and includes component-level tracing with the @observe decorator.
Repository: https://github.com/confident-ai/deepeval Documentation: https://deepeval.com
Installation
pip install -U deepeval
Requires Python 3.9+.
Quick Start
Basic pytest test
import pytest
from deepeval import assert_test
from deepeval.test_case import LLMTestCase
from deepeval.metrics import AnswerRelevancyMetric
def test_chatbot():
metric = AnswerRelevancyMetric(threshold=0.7, model="athropic-claude-sonnet-4-5")
test_case = LLMTestCase(
input="What if these shoes don't fit?",
actual_output="You have 30 days for full refund"
)
assert_test(test_case, [metric])
Run with: deepeval test run test_chatbot.py
Environment setup
DeepEval automatically loads .env.local then .env:
# .env
OPENAI_API_KEY="sk-..."
Core Workflows
RAG Evaluation
Evaluate both retrieval and generation phases:
from deepeval.metrics import (
ContextualPrecisionMetric,
ContextualRecallMetric,
ContextualRelevancyMetric,
AnswerRelevancyMetric,
FaithfulnessMetric
)
# Retrieval metrics
contextual_precision = ContextualPrecisionMetric(threshold=0.7)
contextual_recall = ContextualRecallMetric(threshold=0.7)
contextual_relevancy = ContextualRelevancyMetric(threshold=0.7)
# Generation metrics
answer_relevancy = AnswerRelevancyMetric(threshold=0.7)
faithfulness = FaithfulnessMetric(threshold=0.8)
test_case = LLMTestCase(
input="What are the side effects of aspirin?",
actual_output="Common side effects include stomach upset and nausea.",
expected_output="Aspirin side effects include gastrointestinal issues.",
retrieval_context=[
"Aspirin common side effects: stomach upset, nausea, vomiting.",
"Serious aspirin side effects: gastrointestinal bleeding.",
]
)
evaluate(test_cases=[test_case], metrics=[
contextual_precision, contextual_recall, contextual_relevancy,
answer_relevancy, faithfulness
])
Component-level tracing:
from deepeval.tracing import observe, update_current_span
@observe(metrics=[contextual_relevancy])
def retriever(query: str):
chunks = your_vector_db.search(query)
update_current_span(
test_case=LLMTestCase(input=query, retrieval_context=chunks)
)
return chunks
@observe(metrics=[answer_relevancy, faithfulness])
def generator(query: str, chunks: list):
response = your_llm.generate(query, chunks)
update_current_span(
test_case=LLMTestCase(
input=query,
actual_output=response,
retrieval_context=chunks
)
)
return response
@observe
def rag_pipeline(query: str):
chunks = retriever(query)
return generator(query, chunks)
Conversational AI Evaluation
Test multi-turn dialogues:
from deepeval.test_case import Turn, ConversationalTestCase
from deepeval.metrics import (
RoleAdherenceMetric,
KnowledgeRetentionMetric,
ConversationCompletenessMetric,
TurnRelevancyMetric
)
convo_test_case = ConversationalTestCase(
chatbot_role="professional, empathetic medical assistant",
turns=[
Turn(role="user", content="I have a persistent cough"),
Turn(role="assistant", content="How long have you had this cough?"),
Turn(role="user", content="About a week now"),
Turn(role="assistant", content="A week-long cough should be evaluated.")
]
)
metrics = [
RoleAdherenceMetric(threshold=0.7),
KnowledgeRetentionMetric(threshold=0.7),
ConversationCompletenessMetric(threshold=0.6),
TurnRelevancyMetric(threshold=0.7)
]
evaluate(test_cases=[convo_test_case], metrics=metrics)
Agent Evaluation
Test tool usage and task completion:
from deepeval.test_case import ToolCall
from deepeval.metrics import (
TaskCompletionMetric,
ToolUseMetric,
ArgumentCorrectnessMetric
)
agent_test_case = ConversationalTestCase(
turns=[
Turn(role="user", content="When did Trump first raise tariffs?"),
Turn(
role="assistant",
content="Let me search for that information.",
tools_called=[
ToolCall(
name="WebSearch",
arguments={"query": "Trump first raised tariffs year"}
)
]
),
Turn(role="assistant", content="Trump first raised tariffs in 2018.")
]
)
evaluate(
test_cases=[agent_test_case],
metrics=[
TaskCompletionMetric(threshold=0.7),
ToolUseMetric(threshold=0.7),
ArgumentCorrectnessMetric(threshold=0.7)
]
)
Safety Evaluation
Check for harmful content:
from deepeval.metrics import (
ToxicityMetric,
BiasMetric,
PIILeakageMetric,
HallucinationMetric
)
def safety_gate(output: str, input: str) -> tuple[bool, list]:
"""Returns (passed, reasons) tuple"""
test_case = LLMTestCase(input=input, actual_output=output)
safety_metrics = [
ToxicityMetric(threshold=0.5),
BiasMetric(threshold=0.5),
PIILeakageMetric(threshold=0.5)
]
failures = []
for metric in safety_metrics:
metric.measure(test_case)
if not metric.is_successful():
failures.append(f"{metric.name}: {metric.reason}")
return len(failures) == 0, failures
Metric Selection Guide
RAG Metrics
Retrieval Phase:
ContextualPrecisionMetric- Relevant chunks ranked higher than irrelevant onesContextualRecallMetric- All necessary information retrievedContextualRelevancyMetric- Retrieved chunks relevant to input
Generation Phase:
AnswerRelevancyMetric- Output addresses the input queryFaithfulnessMetric- Output grounded in retrieval context
Conversational Metrics
TurnRelevancyMetric- Each turn relevant to conversationKnowledgeRetentionMetric- Information retained across turnsConversationCompletenessMetric- All aspects addressedRoleAdherenceMetric- Chatbot maintains assigned roleTopicAdherenceMetric- Conversation stays on topic
Agent Metrics
TaskCompletionMetric- Task successfully completedToolUseMetric- Correct tools selectedArgumentCorrectnessMetric- Tool arguments correctMCPUseMetric- MCP correctly used
Safety Metrics
ToxicityMetric- Harmful content detectionBiasMetric- Biased outputs identificationHallucinationMetric- Fabricated informationPIILeakageMetric- Personal information leakage
Custom Metrics
G-Eval (LLM-based):
from deepeval.metrics import GEval
from deepeval.test_case import LLMTestCaseParams
custom_metric = GEval(
name="Professional Tone",
criteria="Determine if response maintains professional, empathetic tone",
evaluation_params=[LLMTestCaseParams.ACTUAL_OUTPUT],
threshold=0.7,
model="anthropic-claude-sonnet-4-5"
)
BaseMetric subclass:
See references/custom_metrics.md for complete guide on creating custom metrics with BaseMetric subclassing and deterministic scorers (ROUGE, BLEU, BERTScore).
Configuration
LLM Provider Setup
DeepEval supports OpenAI, Anthropic Claude, Google Gemini, AWS Bedrock, and 100+ providers via LiteLLM. Anthropic models are preferred.
CLI configuration (global):
deepeval set-azure-openai --openai-endpoint=... --openai-api-key=... --deployment-name=...
deepeval set-ollama deepseek-r1:1.5b
Python configuration (per-metric):
from deepeval.models import AnthropicModel, OllamaModel
anthropic_model = AnthropicModel(
model_id=settings.anthropic_model_id,
client_args={"api_key": settings.anthropic_api_key},
temperature=settings.agent_temperature
)
metric = AnswerRelevancyMetric(model=anthropic_model)
See references/model_providers.md for complete provider configuration guide.
Performance Optimisation
Async mode is enabled by default. Configure with AsyncConfig and CacheConfig:
from deepeval import evaluate, AsyncConfig, CacheConfig
evaluate(
test_cases=[...],
metrics=[...],
async_config=AsyncConfig(
run_async=True,
max_concurrent=20, # Reduce if rate limited
throttle_value=0 # Delay between test cases (seconds)
),
cache_config=CacheConfig(
use_cache=True, # Read from cache
write_cache=True # Write to cache
)
)
CLI parallelisation:
deepeval test run -n 4 -c -i # 4 processes, cached, ignore errors
Best practices:
- Limit to 5 metrics maximum (2-3 generic + 1-2 custom)
- Use the latest available Anthropic Claude Sonnet or Haiku models
- Reduce
max_concurrentto 5 if hitting rate limits - Use
evaluate()function over individualmeasure()calls
See references/async_performance.md for detailed performance optimisation guide.
Dataset Management
Loading datasets
from deepeval.dataset import EvaluationDataset, Golden
dataset = EvaluationDataset()
# From CSV
dataset.add_goldens_from_csv_file(
file_path="./test_data.csv",
input_col_name="question",
expected_output_col_name="answer",
context_col_name="context",
context_col_delimiter="|"
)
# From JSON
dataset.add_goldens_from_json_file(
file_path="./test_data.json",
input_key_name="query",
expected_output_key_name="response"
)
Synthetic generation
from deepeval.synthesizer import Synthesizer
synthesizer = Synthesizer()
# From documents
goldens = synthesizer.generate_goldens_from_docs(
document_paths=["./docs/knowledge_base.pdf"],
max_goldens_per_document=10,
evolution_types=["REASONING", "MULTICONTEXT", "COMPARATIVE"]
)
# From scratch
goldens = synthesizer.generate_goldens_from_scratch(
subject="customer support for SaaS product",
task="answer user questions about billing",
max_goldens=20
)
Evolution types: REASONING, MULTICONTEXT, CONCRETISING, CONSTRAINED, COMPARATIVE, HYPOTHETICAL, IN_BREADTH
See references/dataset_management.md for complete dataset guide including versioning and cloud integration.
Test Case Types
Single-turn (LLMTestCase)
from deepeval.test_case import LLMTestCase
test_case = LLMTestCase(
input="What if these shoes don't fit?",
actual_output="You have 30 days for full refund",
expected_output="We offer 30-day full refund",
retrieval_context=["All customers eligible for 30 day refund"],
tools_called=[ToolCall(name="...", arguments={"...": "..."})]
)
Multi-turn (ConversationalTestCase)
from deepeval.test_case import Turn, ConversationalTestCase
convo_test_case = ConversationalTestCase(
chatbot_role="helpful customer service agent",
turns=[
Turn(role="user", content="I need help with my order"),
Turn(role="assistant", content="I'd be happy to help"),
Turn(role="user", content="It hasn't arrived yet")
]
)
Multimodal (MLLMTestCase)
from deepeval.test_case import MLLMTestCase, MLLMImage
m_test_case = MLLMTestCase(
input=["Describe this image", MLLMImage(url="./photo.png", local=True)],
actual_output=["A red bicycle leaning against a wall"]
)
CI/CD Integration
# .github/workflows/test.yml
name: LLM Tests
on: [push, pull_request]
jobs:
evaluate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v5
- name: Install dependencies
run: pip install deepeval
- name: Run evaluations
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: deepeval test run tests/
References
Detailed implementation guides:
references/model_providers.md - Complete guide for configuring OpenAI, Anthropic, Gemini, Bedrock, and local models. Includes provider-specific considerations, cost analysis, and troubleshooting.
references/custom_metrics.md - Complete guide for creating custom metrics by subclassing BaseMetric. Includes deterministic scorers (ROUGE, BLEU, BERTScore) and LLM-based evaluation patterns.
references/async_performance.md - Complete guide for optimising evaluation performance with async mode, caching, concurrency tuning, and rate limit handling.
references/dataset_management.md - Complete guide for dataset loading, saving, synthetic generation, versioning, and cloud integration with Confident AI.
Best Practices
Metric Selection
- Match metrics to use case (RAG systems need retrieval + generation metrics)
- Start with 2-3 essential metrics, expand as needed
- Use appropriate thresholds (0.7-0.8 for production, 0.5-0.6 for development)
- Combine complementary metrics (answer relevancy + faithfulness)
Test Case Design
- Create representative examples covering common queries and edge cases
- Include context when needed (
retrieval_contextfor RAG,expected_outputfor G-Eval) - Use datasets for scale testing
- Version test cases over time
Evaluation Workflow
- Component-level first - Use
@observefor individual parts - End-to-end validation before deployment
- Automate in CI/CD with
deepeval test run - Track results over time with Confident AI cloud
Testing Anti-Patterns
Avoid:
- Testing only happy paths
- Using unrealistic inputs
- Ignoring metric reasons
- Setting thresholds too high initially
- Running full test suite on every change
Do:
- Test edge cases and failure modes
- Use real user queries as test inputs
- Read and analyse metric reasons
- Adjust thresholds based on empirical results
- Use component-level tests during development
- Separate config and eval content from code