| name | weaviate-local-setup |
| description | Set up and manage a local Weaviate instance using Docker |
| version | 1.0.0 |
| dependencies |
Weaviate Local Setup Skill
Run Weaviate locally using Docker for development, testing, and avoiding network restrictions in Claude Desktop/Web.
Why Use Local Weaviate?
Benefits:
- No network restrictions in Claude Desktop/Web
- Free (no cloud costs)
- Full control over data and configuration
- Fast development/testing cycles
- Works offline
- No API key management for cloud instances
Best for:
- Development and testing
- Learning Weaviate
- Working in Claude Desktop with network restrictions
- Privacy-sensitive projects
Prerequisites
Required:
- Docker Desktop installed and running
- Available ports: 8080 (Weaviate), 8081 (optional for Weaviate Console)
- Python 3.8+ installed
Optional (for specific vectorizers):
- OpenAI API key (for text2vec-openai)
- Cohere API key (for text2vec-cohere)
- Anthropic API key (for generative-anthropic)
Python Environment Setup
IMPORTANT: Do this FIRST before using any Weaviate skills!
Claude will create a virtual environment and install dependencies to avoid conflicts with your system Python.
Step 1: Create Virtual Environment
# Navigate to the weaviate-claude-skills directory
cd ~/Documents/weaviate-claude-skills
# Create virtual environment
python3 -m venv .venv
# Activate it
source .venv/bin/activate # macOS/Linux
# OR
.venv\Scripts\activate # Windows
Step 2: Install Dependencies
# Install required packages
pip install weaviate-client python-dotenv
# Optional: Install additional packages for specific vectorizers
pip install openai # If using OpenAI vectorizer
pip install cohere # If using Cohere vectorizer
Or install everything at once:
pip install -r requirements.txt
Step 3: Verify Installation
import subprocess
import sys
# Check if dependencies are installed
try:
import weaviate
from dotenv import load_dotenv
print("✅ All required packages are installed!")
except ImportError as e:
print(f"❌ Missing package: {e}")
print("Installing dependencies...")
subprocess.check_call([sys.executable, "-m", "pip", "install",
"weaviate-client", "python-dotenv"])
print("✅ Dependencies installed successfully!")
When Using Claude
Claude will check and ensure dependencies are installed before running any Weaviate code.
If you see errors about missing packages, Claude will:
- Check if the virtual environment exists
- Create it if needed
- Install required dependencies
- Proceed with your request
Pro Tip: Keep the virtual environment activated throughout your Claude session for best results.
Quick Start
Option 1: Basic Setup (No API Keys Required)
Use Weaviate's built-in vectorizer (no external API needed):
# Start Weaviate with transformers (runs locally, no API key)
docker run -d \
--name weaviate \
-p 8080:8080 \
-p 50051:50051 \
-e QUERY_DEFAULTS_LIMIT=25 \
-e AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true \
-e PERSISTENCE_DATA_PATH='/var/lib/weaviate' \
-e DEFAULT_VECTORIZER_MODULE='text2vec-transformers' \
-e ENABLE_MODULES='text2vec-transformers' \
-e TRANSFORMERS_INFERENCE_API='http://t2v-transformers:8080' \
-e CLUSTER_HOSTNAME='node1' \
semitechnologies/weaviate:1.28.1
# Start the transformers module
docker run -d \
--name t2v-transformers \
-e ENABLE_CUDA=0 \
semitechnologies/transformers-inference:sentence-transformers-multi-qa-MiniLM-L6-cos-v1
Connection:
WEAVIATE_URL=localhost:8080
WEAVIATE_API_KEY= # Leave empty for local
Option 2: With OpenAI Vectorizer
Use OpenAI embeddings (requires OpenAI API key):
docker run -d \
--name weaviate \
-p 8080:8080 \
-p 50051:50051 \
-e QUERY_DEFAULTS_LIMIT=25 \
-e AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true \
-e PERSISTENCE_DATA_PATH='/var/lib/weaviate' \
-e DEFAULT_VECTORIZER_MODULE='text2vec-openai' \
-e ENABLE_MODULES='text2vec-openai,generative-openai' \
-e CLUSTER_HOSTNAME='node1' \
semitechnologies/weaviate:1.28.1
Connection (.env):
WEAVIATE_URL=localhost:8080
WEAVIATE_API_KEY= # Leave empty
OPENAI_API_KEY=your-openai-key-here
Option 3: Docker Compose (Recommended for Production)
See docker-compose.yml in this folder (created separately).
# Start Weaviate
docker-compose up -d
# Check status
docker-compose ps
# View logs
docker-compose logs -f weaviate
# Stop Weaviate
docker-compose down
# Stop and remove data
docker-compose down -v
Docker Commands Reference
Container Management
# Start Weaviate
docker start weaviate
# Stop Weaviate
docker stop weaviate
# Restart Weaviate
docker restart weaviate
# Check if running
docker ps | grep weaviate
# View logs
docker logs weaviate
# Follow logs in real-time
docker logs -f weaviate
# Remove container (keeps data)
docker rm weaviate
# Remove container and data volume
docker rm -v weaviate
Health Checks
# Check if Weaviate is ready
curl http://localhost:8080/v1/.well-known/ready
# Check Weaviate metadata
curl http://localhost:8080/v1/meta
# Expected response:
# {"hostname":"http://[::]:8080","modules":{...},"version":"1.28.1"}
Data Persistence
Weaviate data is stored in Docker volumes. To persist data across container restarts:
# Create a named volume
docker volume create weaviate-data
# Run with named volume
docker run -d \
--name weaviate \
-p 8080:8080 \
-v weaviate-data:/var/lib/weaviate \
-e PERSISTENCE_DATA_PATH='/var/lib/weaviate' \
-e AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true \
semitechnologies/weaviate:1.28.1
# List volumes
docker volume ls
# Inspect volume
docker volume inspect weaviate-data
# Backup data (export volume to tar)
docker run --rm -v weaviate-data:/data -v $(pwd):/backup \
ubuntu tar czf /backup/weaviate-backup.tar.gz /data
# Restore data (import tar to volume)
docker run --rm -v weaviate-data:/data -v $(pwd):/backup \
ubuntu tar xzf /backup/weaviate-backup.tar.gz -C /
Python Connection Code
Once Weaviate is running locally, connect using:
import weaviate
import os
from dotenv import load_dotenv
load_dotenv()
# Connect to local Weaviate (no authentication)
client = weaviate.connect_to_local(
host="localhost",
port=8080,
grpc_port=50051
)
try:
print("✅ Connected to local Weaviate!")
# Check if ready
if client.is_ready():
print("🟢 Weaviate is ready")
# Get metadata
meta = client.get_meta()
print(f"📦 Version: {meta['version']}")
except Exception as e:
print(f"❌ Error: {e}")
finally:
client.close()
Alternative connection with API key header (if enabled):
client = weaviate.connect_to_local(
host="localhost",
port=8080,
grpc_port=50051,
headers={
"X-OpenAI-Api-Key": os.getenv("OPENAI_API_KEY")
}
)
Environment Variables for Local Setup
Update your .env file:
# Local Weaviate Connection
WEAVIATE_URL=localhost:8080
WEAVIATE_API_KEY= # Leave empty for local instances
# Vectorizer API Keys (only needed if using these vectorizers)
OPENAI_API_KEY=your-openai-api-key
COHERE_API_KEY=your-cohere-api-key
ANTHROPIC_API_KEY=your-anthropic-api-key
HUGGINGFACE_API_KEY=your-huggingface-api-key
Available Vectorizer Modules
Text Vectorizers
| Module | Description | API Key Required | Best For |
|---|---|---|---|
text2vec-transformers |
Local embeddings using transformers | No | Development, offline work |
text2vec-openai |
OpenAI embeddings (ada-002) | Yes (OpenAI) | Production, high quality |
text2vec-cohere |
Cohere embeddings | Yes (Cohere) | Multilingual, semantic search |
text2vec-huggingface |
HuggingFace models | Optional | Custom models |
text2vec-palm |
Google PaLM embeddings | Yes (Google) | Google ecosystem |
Multi-Modal Vectorizers
| Module | Description | API Key Required |
|---|---|---|
multi2vec-clip |
OpenAI CLIP (text + images) | No (local) |
multi2vec-bind |
ImageBind (text, image, audio) | No (local) |
img2vec-neural |
Image-only vectorization | No (local) |
Generative Modules (for RAG)
| Module | Description | API Key Required |
|---|---|---|
generative-openai |
GPT-3.5/GPT-4 for RAG | Yes (OpenAI) |
generative-cohere |
Cohere Generate | Yes (Cohere) |
generative-anthropic |
Claude for RAG | Yes (Anthropic) |
generative-palm |
Google PaLM | Yes (Google) |
Docker Image Tags
Stable versions:
semitechnologies/weaviate:1.28.1(latest stable)semitechnologies/weaviate:1.27.0semitechnologies/weaviate:1.26.0
Preview/Beta:
semitechnologies/weaviate:preview
Module images:
semitechnologies/transformers-inference:sentence-transformers-multi-qa-MiniLM-L6-cos-v1semitechnologies/transformers-inference:sentence-transformers-all-MiniLM-L6-v2semitechnologies/multi2vec-clip:sentence-transformers-clip-ViT-B-32
Common Issues & Troubleshooting
Port Already in Use
# Check what's using port 8080
lsof -i :8080
# Kill the process (if needed)
kill -9 <PID>
# Or run Weaviate on a different port
docker run -d -p 8081:8080 --name weaviate ...
Container Won't Start
# Check logs
docker logs weaviate
# Remove and recreate
docker rm -f weaviate
docker run ...
Cannot Connect from Python
# Make sure you're using the correct connection method for local
client = weaviate.connect_to_local() # NOT connect_to_weaviate_cloud()
# Check Weaviate is actually running
# curl http://localhost:8080/v1/.well-known/ready
Data Not Persisting
Make sure you're using a volume:
docker run -v weaviate-data:/var/lib/weaviate ...
Module Not Available
Enable the module in the ENABLE_MODULES environment variable:
-e ENABLE_MODULES='text2vec-openai,generative-openai'
Performance Tuning
Memory Limits
# Set memory limits
docker run -d \
--name weaviate \
--memory="4g" \
--memory-swap="4g" \
...
CPU Limits
# Limit CPUs
docker run -d \
--name weaviate \
--cpus="2.0" \
...
Query Defaults
# Increase default query limit
-e QUERY_DEFAULTS_LIMIT=100
# Set maximum query results
-e QUERY_MAXIMUM_RESULTS=10000
Weaviate Console (Optional UI)
Run the Weaviate Console for a web UI:
docker run -d \
--name weaviate-console \
-p 8081:8080 \
semitechnologies/weaviate-console:latest
# Access at: http://localhost:8081
# Enter Weaviate URL: http://localhost:8080
Migration: Cloud to Local
Export from Cloud
import weaviate
import json
# Connect to cloud
cloud_client = weaviate.connect_to_weaviate_cloud(
cluster_url=os.getenv("WEAVIATE_URL"),
auth_credentials=weaviate.auth.Auth.api_key(os.getenv("WEAVIATE_API_KEY"))
)
collection = cloud_client.collections.get("YourCollection")
# Export all objects
objects = []
for item in collection.iterator():
objects.append({
"properties": item.properties,
"vector": item.vector
})
# Save to file
with open("export.json", "w") as f:
json.dump(objects, f)
cloud_client.close()
Import to Local
# Connect to local
local_client = weaviate.connect_to_local()
# Create collection (same schema as cloud)
# ... create collection code ...
# Import data
collection = local_client.collections.get("YourCollection")
with collection.batch.dynamic() as batch:
for obj in objects:
batch.add_object(properties=obj["properties"], vector=obj.get("vector"))
local_client.close()
Best Practices
- Use Docker Compose for complex setups with multiple modules
- Always use volumes for data persistence
- Monitor logs during development:
docker logs -f weaviate - Backup regularly using volume exports
- Use transformers module for development (no API costs)
- Switch to OpenAI for production (better quality)
- Set memory limits to prevent OOM crashes
- Test connections before importing large datasets
Integration with Other Skills
This skill works perfectly with:
weaviate-connection- Just uselocalhost:8080as the URLweaviate-collection-manager- Create collections on local instanceweaviate-data-ingestion- Upload data locally (faster, no network limits)weaviate-query-agent- Query local data (faster responses)
Example Workflow
# 1. Start Weaviate locally
docker run -d --name weaviate -p 8080:8080 \
-e AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true \
-e PERSISTENCE_DATA_PATH='/var/lib/weaviate' \
semitechnologies/weaviate:1.28.1
# 2. Verify it's running
curl http://localhost:8080/v1/.well-known/ready
# 3. Update .env
# WEAVIATE_URL=localhost:8080
# WEAVIATE_API_KEY=
# 4. Use other skills normally
# Claude: "Connect to my local Weaviate instance"
# Claude: "Create a collection called Documents"
# Claude: "Upload these 100 PDFs"
# Claude: "Search for information about X"
Resources
Built for the Weaviate Skills Collection
Questions? Check the main README or Weaviate documentation.