| name | weaviate-query-agent |
| description | Search and retrieve data from local Weaviate using semantic search, filters, RAG, and hybrid queries |
| version | 2.0.0 |
| author | Scott Askinosie |
| dependencies | weaviate-connection, weaviate-collection-manager, weaviate-local-setup |
Weaviate Query Agent Skill
This skill helps you search and retrieve data from your local Weaviate collections using semantic vector search, keyword search, filters, and RAG capabilities.
Important Note
This skill is designed for LOCAL Weaviate instances only. Ensure you have Weaviate running locally in Docker before using this skill.
Purpose
Query your local Weaviate collections intelligently to find relevant information, perform Q&A, and analyze your data.
When to Use This Skill
- User wants to search for information in a collection
- User asks questions that need semantic search
- User needs to filter results by specific criteria
- User wants to use RAG (Retrieval Augmented Generation) for Q&A
- User asks about finding similar items
- User needs to combine vector search with filters
Prerequisites Check
Claude should verify these prerequisites before proceeding:
- ā weaviate-local-setup completed - Python environment and dependencies installed
- ā weaviate-connection completed - Successfully connected to Weaviate
- ā weaviate-data-ingestion used - Collection has data to query
- ā Docker container running - Weaviate is accessible at localhost:8080
If any prerequisites are missing, Claude should:
- Load the required prerequisite skill first
- Guide the user through the setup
- Then return to this skill
Prerequisites
- Local Weaviate running in Docker (see weaviate-local-setup skill)
- Active Weaviate connection (use weaviate-connection skill first)
- Collection with data (use weaviate-data-ingestion skill to add data)
- Python weaviate-client library installed
Query Types
1. Semantic Search (Vector Search)
Find objects semantically similar to your query:
import weaviate
# Assuming client is already connected
collection = client.collections.get("Articles")
# Search by meaning
response = collection.query.near_text(
query="artificial intelligence and machine learning",
limit=5
)
# Display results
for obj in response.objects:
print(f"Title: {obj.properties['title']}")
print(f"Content: {obj.properties['content'][:200]}...")
print(f"Score: {obj.metadata.score}\n")
2. Search with Specific Properties
Return only the fields you need:
response = collection.query.near_text(
query="vector databases",
limit=5,
return_properties=["title", "author", "publishDate"]
)
for obj in response.objects:
print(f"{obj.properties['title']} by {obj.properties['author']}")
3. Keyword Search (BM25)
Traditional keyword-based search:
from weaviate.classes.query import QueryReference
response = collection.query.bm25(
query="vector search",
limit=5
)
for obj in response.objects:
print(f"Title: {obj.properties['title']}")
4. Hybrid Search (Best of Both Worlds)
Combine semantic and keyword search:
response = collection.query.hybrid(
query="machine learning applications",
limit=5,
alpha=0.5 # 0 = pure BM25, 1 = pure vector, 0.5 = balanced
)
for obj in response.objects:
print(f"Title: {obj.properties['title']}")
print(f"Score: {obj.metadata.score}\n")
5. Filter Results
Search with conditions:
from weaviate.classes.query import Filter
# Search with author filter
response = collection.query.near_text(
query="AI advancements",
limit=5,
filters=Filter.by_property("author").equal("Jane Smith")
)
# Multiple filters
response = collection.query.near_text(
query="technology trends",
limit=10,
filters=(
Filter.by_property("author").equal("Jane Smith") &
Filter.by_property("publishDate").greater_than("2024-01-01T00:00:00Z")
)
)
# Filter by array contains
response = collection.query.near_text(
query="programming",
filters=Filter.by_property("tags").contains_any(["python", "javascript"])
)
6. Filter Operators
from weaviate.classes.query import Filter
# Equality
Filter.by_property("status").equal("published")
# Comparison
Filter.by_property("price").greater_than(100)
Filter.by_property("price").less_than(500)
Filter.by_property("price").greater_or_equal(100)
Filter.by_property("price").less_or_equal(500)
# String matching
Filter.by_property("title").like("*vector*") # Contains "vector"
# Array operations
Filter.by_property("tags").contains_any(["ai", "ml"])
Filter.by_property("tags").contains_all(["python", "tutorial"])
# Combine filters
(Filter.by_property("price").greater_than(100) &
Filter.by_property("category").equal("Electronics"))
# OR conditions
(Filter.by_property("author").equal("John") |
Filter.by_property("author").equal("Jane"))
7. Search by Image (Multi-modal)
For collections with CLIP or multi2vec:
import base64
# Encode query image
with open("query_image.jpg", "rb") as f:
query_image = base64.b64encode(f.read()).decode("utf-8")
collection = client.collections.get("ProductCatalog")
# Find similar images
response = collection.query.near_image(
near_image=query_image,
limit=5,
return_properties=["name", "description", "price"]
)
for obj in response.objects:
print(f"Product: {obj.properties['name']} - ${obj.properties['price']}")
8. Search by Vector
If you have a pre-computed embedding:
# Your custom embedding
query_vector = [0.1, 0.2, 0.3, ...] # 1536 dimensions for OpenAI
response = collection.query.near_vector(
near_vector=query_vector,
limit=5
)
9. Get Object by ID
Retrieve specific object:
# Get by UUID
obj = collection.query.fetch_object_by_id("uuid-here")
print(f"Title: {obj.properties['title']}")
print(f"Content: {obj.properties['content']}")
10. Fetch Multiple Objects
Get all objects or filter by property:
from weaviate.classes.query import Filter
# Get all objects (paginated)
response = collection.query.fetch_objects(limit=100)
# Get objects matching filter
response = collection.query.fetch_objects(
filters=Filter.by_property("section").equal("Introduction"),
limit=50
)
for obj in response.objects:
print(obj.properties['title'])
RAG (Retrieval Augmented Generation)
Use Weaviate's generative module for Q&A:
Single Prompt RAG
# Collection must have generative module configured
collection = client.collections.get("TechnicalDocuments")
response = collection.generate.near_text(
query="How do I configure HVAC systems?",
single_prompt="Answer this question based on the context: {question}. Context: {content}",
limit=3
)
# Get generated answer
print(f"Answer: {response.generated}")
# See source documents
for obj in response.objects:
print(f"\nSource: {obj.properties['title']}")
print(f"Content: {obj.properties['content'][:200]}...")
Grouped Task RAG
Generate one response using all results:
response = collection.generate.near_text(
query="What are the best practices for fan selection?",
grouped_task="Summarize the key recommendations from these documents about fan selection",
limit=5
)
print(response.generated)
Custom RAG Implementation
If collection doesn't have generative module:
from openai import OpenAI
# Search Weaviate
weaviate_collection = weaviate_client.collections.get("TechnicalDocuments")
search_results = weaviate_collection.query.near_text(
query="What is the friction loss for round elbows?",
limit=5,
return_properties=["content", "section", "page"]
)
# Build context
context = "\n\n".join([
f"[{obj.properties['section']} - Page {obj.properties['page']}]\n{obj.properties['content']}"
for obj in search_results.objects
])
# Call LLM
openai_client = OpenAI()
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a technical assistant. Answer questions based on the provided context."
},
{
"role": "user",
"content": f"Question: What is the friction loss for round elbows?\n\nContext:\n{context}"
}
]
)
answer = response.choices[0].message.content
print(answer)
Vision-Enabled RAG (Query Images with GPT-4o Vision)
When your collection contains images (like maps, charts, diagrams), you can use GPT-4o Vision to analyze them:
Single Image Analysis
from openai import OpenAI
import base64
# Search Weaviate for results with visual content
weaviate_client = client.collections.get("Cook_Engineering_Manual")
search_results = weaviate_client.query.near_text(
query="Missouri wind zone map",
limit=5,
return_properties=["content", "section", "page", "visual_content", "visual_description", "has_critical_visual"]
)
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Process results and analyze images
for obj in search_results.objects:
props = obj.properties
# Check if this result has visual content
if props.get('has_critical_visual') and props.get('visual_content'):
print(f"\nš Analyzing visual content from page {props.get('page')}")
# The image is already base64 encoded in Weaviate
image_base64 = props['visual_content']
# Call GPT-4o Vision to analyze the image
vision_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Question: Is Missouri considered a high wind zone?\n\nContext: {props.get('content', '')}\n\nPlease analyze the image and answer the question based on what you see."
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
],
max_tokens=1000
)
answer = vision_response.choices[0].message.content
print(f"\nš¤ Answer:\n{answer}")
print(f"\nš Source: {props.get('section')} - Page {props.get('page')}")
Complete Vision RAG Pipeline
from openai import OpenAI
import os
def vision_rag_query(
question: str,
collection_name: str = "TechnicalDocuments",
limit: int = 5
):
"""
Complete RAG pipeline with vision support.
Searches Weaviate, finds relevant text and images, uses GPT-4o Vision to analyze.
"""
# Step 1: Connect to Weaviate
weaviate_client = weaviate.connect_to_weaviate_cloud(
cluster_url=os.getenv("WEAVIATE_URL"),
auth_credentials=weaviate.auth.Auth.api_key(os.getenv("WEAVIATE_API_KEY")),
skip_init_checks=True
)
try:
# Step 2: Search for relevant content
print(f"š Searching for: {question}")
collection = weaviate_client.collections.get(collection_name)
response = collection.query.near_text(
query=question,
limit=limit,
return_properties=["content", "section", "page", "visual_content",
"visual_description", "has_critical_visual"]
)
if not response.objects:
return "No relevant information found."
# Step 3: Process results - separate text and visual content
text_context = []
visual_items = []
for obj in response.objects:
props = obj.properties
# Collect text context
text_context.append(
f"[{props.get('section', 'Unknown')} - Page {props.get('page', 'N/A')}]\n"
f"{props.get('content', '')}"
)
# Collect visual content for analysis
if props.get('has_critical_visual') and props.get('visual_content'):
visual_items.append({
'image': props['visual_content'],
'description': props.get('visual_description', ''),
'page': props.get('page'),
'section': props.get('section'),
'context': props.get('content', '')
})
# Step 4: Analyze with GPT-4o Vision if images found
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
if visual_items:
print(f"š¼ļø Found {len(visual_items)} images - analyzing with GPT-4o Vision...")
# Build message content with both text and images
message_content = [
{
"type": "text",
"text": f"Question: {question}\n\nText Context:\n" + "\n\n".join(text_context[:3])
}
]
# Add images to the message
for idx, item in enumerate(visual_items[:3]): # Limit to 3 images
message_content.append({
"type": "text",
"text": f"\n\nImage {idx+1} (Page {item['page']} - {item['section']}):\nContext: {item['context'][:200]}..."
})
message_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{item['image']}",
"detail": "high" # Use high detail for technical diagrams
}
})
# Call GPT-4o Vision
vision_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a technical assistant with vision capabilities. Analyze both text and images to provide accurate, comprehensive answers. When analyzing maps, charts, or diagrams, describe what you see and relate it to the question."
},
{
"role": "user",
"content": message_content
}
],
max_tokens=2000
)
answer = vision_response.choices[0].message.content
else:
# No images - use text-only RAG
print("š No images found - using text-only RAG...")
text_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a technical assistant. Answer based on the provided context."
},
{
"role": "user",
"content": f"Question: {question}\n\nContext:\n" + "\n\n".join(text_context)
}
],
max_tokens=1000
)
answer = text_response.choices[0].message.content
# Step 5: Format response
result = f"\n{'='*70}\n"
result += f"š¤ ANSWER:\n\n{answer}\n"
result += f"\n{'='*70}\n"
result += f"š SOURCES:\n\n"
for i, obj in enumerate(response.objects[:5], 1):
props = obj.properties
visual_indicator = " š¼ļø" if props.get('has_critical_visual') else ""
result += f"{i}. {props.get('section', 'Unknown')} - Page {props.get('page', 'N/A')}{visual_indicator}\n"
return result
finally:
weaviate_client.close()
# Example usage
if __name__ == "__main__":
result = vision_rag_query(
question="Is Missouri considered a high wind zone for HVAC equipment?",
collection_name="Cook_Engineering_Manual",
limit=5
)
print(result)
Quick Vision Query Helper
def quick_vision_query(question: str, search_query: str = None):
"""
Quick helper for vision-enabled queries.
Automatically handles search, image retrieval, and GPT-4o Vision analysis.
"""
from openai import OpenAI
import weaviate
import os
if search_query is None:
search_query = question
# Connect
client = weaviate.connect_to_weaviate_cloud(
cluster_url=os.getenv("WEAVIATE_URL"),
auth_credentials=weaviate.auth.Auth.api_key(os.getenv("WEAVIATE_API_KEY")),
skip_init_checks=True
)
try:
collection = client.collections.get("Cook_Engineering_Manual")
# Search with visual priority
results = collection.query.near_text(
query=search_query,
limit=3,
filters=Filter.by_property("has_critical_visual").equal(True), # Prioritize visual content
return_properties=["content", "section", "page", "visual_content", "visual_description"]
)
if not results.objects:
return "No visual content found for this query."
# Use first result with image
obj = results.objects[0]
props = obj.properties
if not props.get('visual_content'):
return "No image found in search results."
# Analyze with GPT-4o Vision
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": f"{question}\n\nContext: {props.get('content', '')}"},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{props['visual_content']}"}}
]
}]
)
return f"š Source: {props.get('section')} - Page {props.get('page')}\n\n{response.choices[0].message.content}"
finally:
client.close()
# Usage
answer = quick_vision_query("Is Missouri a high wind zone?", "Missouri wind zone map")
print(answer)
Advanced Query Features
1. Limit and Offset (Pagination)
# Get results 10-20
response = collection.query.near_text(
query="AI trends",
limit=10,
offset=10
)
2. Distance Threshold
Only return results within certain similarity:
response = collection.query.near_text(
query="machine learning",
distance=0.3, # Only results with distance < 0.3
limit=10
)
3. Include Vector in Response
response = collection.query.near_text(
query="vector search",
limit=5,
return_metadata=["vector"]
)
for obj in response.objects:
print(f"Vector: {obj.metadata.vector[:5]}...") # First 5 dimensions
4. Aggregate Queries
Get statistics about your collection:
from weaviate.classes.aggregate import GroupByAggregate
# Count objects
result = collection.aggregate.over_all(
total_count=True
)
print(f"Total objects: {result.total_count}")
# Group by property
result = collection.aggregate.over_all(
group_by=GroupByAggregate(prop="author")
)
for group in result.groups:
print(f"Author: {group.grouped_by.value} - Count: {group.total_count}")
5. Multi-target Vector Search
For collections with multiple vector spaces:
from weaviate.classes.query import TargetVectors
# Search specific vector space
response = collection.query.near_text(
query="machine learning",
target_vector="content_vector", # Specify which vector
limit=5
)
6. Reranking
Improve search quality with reranking:
# Collection must have reranker configured
response = collection.query.near_text(
query="best practices for database design",
limit=20,
rerank={
"property": "content",
"query": "database design best practices"
}
)
Complete Search Examples
Example 1: Advanced Document Search
from weaviate.classes.query import Filter, MetadataQuery
collection = client.collections.get("TechnicalDocuments")
# Complex search with filters and specific properties
response = collection.query.near_text(
query="seismic zone requirements",
limit=10,
filters=(
Filter.by_property("section").like("*Building*") &
Filter.by_property("page").greater_than(50)
),
return_properties=["title", "content", "section", "page"],
return_metadata=MetadataQuery(distance=True, certainty=True)
)
# Process results
for obj in response.objects:
print(f"\n{'='*60}")
print(f"Section: {obj.properties['section']}")
print(f"Page: {obj.properties['page']}")
print(f"Certainty: {obj.metadata.certainty:.2%}")
print(f"\nContent:\n{obj.properties['content'][:300]}...")
Example 2: Multi-Modal Product Search
import base64
collection = client.collections.get("ProductCatalog")
# Search by text and image
with open("reference_product.jpg", "rb") as f:
ref_image = base64.b64encode(f.read()).decode("utf-8")
# Hybrid approach: text + image similarity
response = collection.query.near_image(
near_image=ref_image,
limit=10,
filters=Filter.by_property("price").less_than(500),
return_properties=["name", "description", "price", "category"]
)
print("Similar products under $500:\n")
for obj in response.objects:
print(f"⢠{obj.properties['name']}")
print(f" Price: ${obj.properties['price']}")
print(f" Category: {obj.properties['category']}\n")
Example 3: Interactive Q&A System
def ask_question(question: str, collection_name: str = "TechnicalDocuments"):
"""Interactive Q&A using RAG"""
collection = client.collections.get(collection_name)
# Search with RAG
response = collection.generate.near_text(
query=question,
single_prompt=f"""Based on the following context, answer this question: {question}
Context: {{content}}
Provide a clear, concise answer. If you cannot answer based on the context, say so.""",
limit=5
)
print(f"\nš¤ Answer:\n{response.generated}\n")
print(f"š Sources:")
for i, obj in enumerate(response.objects, 1):
print(f"{i}. {obj.properties.get('title', 'Untitled')} (Page {obj.properties.get('page', 'N/A')})")
# Use it
ask_question("What are the wind zone requirements for Missouri?")
ask_question("How do I calculate motor efficiency?")
Query Performance Tips
- Use Filters: Pre-filter before vector search for better performance
- Limit Results: Only retrieve what you need (smaller
limitis faster) - Select Properties: Don't return all properties if you only need some
- Batch Queries: Query once and process locally rather than many small queries
- Hybrid Search: Use
alphaparameter to balance speed vs accuracy - Index Optimization: Ensure properties used in filters are indexed
Error Handling
from weaviate.exceptions import WeaviateQueryException
try:
response = collection.query.near_text(
query="machine learning",
limit=10
)
if not response.objects:
print("No results found")
else:
for obj in response.objects:
print(obj.properties['title'])
except WeaviateQueryException as e:
print(f"Query error: {str(e)}")
except Exception as e:
print(f"Unexpected error: {str(e)}")
Troubleshooting
Issue: "No results found"
- Solution: Try broader query terms
- Solution: Check if collection has data
- Solution: Verify vectorizer is working
Issue: "Filter not working"
- Solution: Check property name matches schema exactly (camelCase)
- Solution: Ensure property type matches filter operation
- Solution: Verify property is indexed
Issue: "Slow queries"
- Solution: Reduce
limitvalue - Solution: Use filters to narrow search space
- Solution: Return fewer properties
- Solution: Check collection size and indexing
Issue: "Generative search fails"
- Solution: Verify collection has generative module configured
- Solution: Check API keys for OpenAI/Cohere are set
- Solution: Ensure sufficient API quota
Issue: "Vision query returns no images"
- Cause: Collection doesn't have blob fields or images aren't stored
- Solution: Verify your schema has a blob property (e.g.,
visual_content) - Solution: Check objects actually have image data:
obj.properties.get('visual_content') - Solution: Use filter to prioritize visual content:
Filter.by_property("has_critical_visual").equal(True)
Issue: "GPT-4o Vision API fails"
- Cause: Missing or invalid OpenAI API key
- Solution: Verify
OPENAI_API_KEYis set in environment - Solution: Check API key has access to GPT-4o Vision (not all keys do)
- Solution: Ensure you have sufficient API credits/quota
Issue: "Image is corrupted or won't display"
- Cause: Image not properly base64 encoded
- Solution: Ensure image is stored as base64 string in Weaviate
- Solution: Verify format:
data:image/jpeg;base64,{base64_string} - Solution: Check image size - very large images may need compression
Issue: "Vision analysis is incorrect or incomplete"
- Cause: Low-quality image or GPT-4o can't interpret the visual
- Solution: Use
"detail": "high"parameter for technical diagrams/maps - Solution: Provide more context in the prompt about what type of visual it is
- Solution: For complex charts/maps, ask specific questions rather than open-ended queries
- Example: Instead of "What does this show?", ask "Is Missouri in the high wind zone on this map?"
Issue: "Vision query is slow"
- Cause: GPT-4o Vision API calls take longer than text-only
- Solution: Limit number of images analyzed (use
[:3]to limit to 3 images) - Solution: Use smaller images when possible
- Solution: Consider caching results for frequently asked questions
- Solution: Filter to only retrieve visual content when needed
Complete Query Pipeline Example
import weaviate
from weaviate.classes.query import Filter, MetadataQuery
from openai import OpenAI
import os
def semantic_search_with_rag(
question: str,
collection_name: str = "TechnicalDocuments",
limit: int = 5,
filters: Filter | None = None
):
"""Complete search pipeline with custom RAG"""
# Connect to Weaviate
weaviate_client = weaviate.connect_to_weaviate_cloud(
cluster_url=os.getenv("WEAVIATE_URL"),
auth_credentials=weaviate.auth.Auth.api_key(os.getenv("WEAVIATE_API_KEY"))
)
try:
# Step 1: Vector search
print(f"š Searching for: {question}")
collection = weaviate_client.collections.get(collection_name)
response = collection.query.near_text(
query=question,
limit=limit,
filters=filters,
return_properties=["content", "section", "page", "title"],
return_metadata=MetadataQuery(distance=True)
)
if not response.objects:
return "No relevant information found."
# Step 2: Build context
context_parts = []
sources = []
for obj in response.objects:
props = obj.properties
context_parts.append(
f"[{props.get('section', 'Unknown')} - Page {props.get('page', 'N/A')}]\n{props['content']}"
)
sources.append({
"title": props.get('title', 'Untitled'),
"section": props.get('section', 'Unknown'),
"page": props.get('page', 'N/A'),
"distance": obj.metadata.distance
})
context = "\n\n---\n\n".join(context_parts)
# Step 3: Generate answer
print("š¤ Generating answer...")
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
chat_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "You are a technical assistant. Provide accurate answers based on the context. Cite specific page numbers when possible."
},
{
"role": "user",
"content": f"Question: {question}\n\nContext:\n{context}\n\nProvide a comprehensive answer."
}
],
max_tokens=1000
)
answer = chat_response.choices[0].message.content
# Step 4: Format response
result = f"\n{'='*70}\n"
result += f"š¤ ANSWER:\n\n{answer}\n"
result += f"\n{'='*70}\n"
result += f"š SOURCES:\n\n"
for i, source in enumerate(sources, 1):
result += f"{i}. {source['title']} - {source['section']} (Page {source['page']})\n"
result += f" Similarity: {1 - source['distance']:.2%}\n"
return result
finally:
weaviate_client.close()
# Example usage
if __name__ == "__main__":
question = "What is the friction loss for round elbows?"
# Optional: Add filters
filters = Filter.by_property("section").like("*Ductwork*")
result = semantic_search_with_rag(
question=question,
collection_name="Cook_Engineering_Manual",
limit=5,
filters=filters
)
print(result)
Next Steps
After mastering queries:
- Combine with weaviate-data-ingestion for continuous data updates
- Monitor query performance and adjust schemas
- Experiment with different query types for your use case
- Build custom applications on top of Weaviate