| name | google-gemini-file-search |
| description | Google Gemini File Search for managed RAG with 100+ file formats. Use for document Q&A, knowledge bases, or encountering immutability errors, quota issues, polling failures. Supports Gemini 3 Pro/Flash (Gemini 2.5 legacy). |
| license | MIT |
| metadata | [object Object] |
Google Gemini File Search
Status: Production Ready | Last Verified: 2025-11-18
What Is File Search?
Google Gemini File Search is fully managed RAG (Retrieval-Augmented Generation):
- Upload documents → Automatic chunking + embeddings + vector search + citations
- No vector database setup required
- 100+ file formats supported (PDF, Word, Excel, code, Markdown, JSON, etc.)
- Built-in grounding with citation metadata
- Cost-effective: $0.15/1M tokens (one-time indexing), free storage + queries
Key difference from other RAG:
- Cloudflare Vectorize: You manage chunking/embeddings
- OpenAI Files API: Tied to Assistants API threads
- File Search: Fully managed, standalone RAG
Quick Start (5 Minutes)
1. Get API Key & Install
Get API key: https://aistudio.google.com/apikey (Free tier: 1 GB storage, 1,500 requests/day)
bun add @google/genai
Version: 0.21.0+ | Node.js: 18+
2. Basic Example
import { GoogleGenerativeAI } from '@google/genai';
import fs from 'fs';
const ai = new GoogleGenerativeAI(process.env.GOOGLE_AI_API_KEY);
// Create store
const fileStore = await ai.fileSearchStores.create({
config: { displayName: 'my-knowledge-base' }
});
// Upload document
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('./manual.pdf'),
config: {
displayName: 'Installation Manual',
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500,
maxOverlapTokens: 50
}
}
}
});
// Poll until done
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000));
operation = await ai.operations.get({ name: operation.name });
}
// Query documents
const model = ai.getGenerativeModel({
model: 'gemini-2.5-pro', // Only 2.5 Pro/Flash supported
tools: [{
fileSearchTool: {
fileSearchStores: [fileStore.name]
}
}]
});
const result = await model.generateContent('How do I install the product?');
console.log(result.response.text());
// Get citations
const grounding = result.response.candidates[0].groundingMetadata;
if (grounding) {
console.log('Sources:', grounding.groundingChunks);
}
Load references/setup-guide.md for complete walkthrough with batch uploads, error handling, and production checklist.
Critical Rules
Always Do
- Use delete + re-upload for updates (documents are immutable)
- Calculate 3x storage (embeddings + metadata = ~3x file size)
- Configure chunking (500 tokens for technical docs, 800 for prose)
- Poll operations until
done: true(with timeout) - Use force: true when deleting stores with documents
- Use Gemini 2.5 models only (2.5-pro or 2.5-flash)
- Keep metadata under 20 fields per document
- Estimate indexing costs ($0.15/1M tokens one-time)
Never Do
- Never try to update documents (no PATCH API exists)
- Never assume storage = file size (it's 3x)
- Never skip chunking config (defaults may not be optimal)
- Never upload without polling (operation may still be processing)
- Never delete without force if store has documents
- Never use Gemini 1.5 models (File Search requires 2.5)
- Never exceed 20 metadata fields (hard limit)
- Never upload large files without cost estimate
Top 3 Errors Prevented
Error 1: Document Immutability
Problem: Trying to update existing document
Solution: Delete + re-upload pattern
// Find and delete old version
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
});
const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf');
if (oldDoc) {
await ai.fileSearchStores.documents.delete({
name: oldDoc.name,
force: true
});
}
// Upload new version
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('manual-v2.pdf'),
config: { displayName: 'manual.pdf' }
});
Error 2: Storage Quota Exceeded
Problem: Storage calculation wrong (3x multiplier)
Solution: Estimate before upload
const fileSize = fs.statSync('data.pdf').size;
const estimatedStorage = fileSize * 3; // Embeddings + metadata
if (estimatedStorage > 1e9) {
console.warn('⚠️ May exceed free tier 1 GB limit');
}
Error 3: Model Compatibility
Problem: Using wrong model version
Solution: Use Gemini 2.5 only
// ✅ CORRECT
const model = ai.getGenerativeModel({
model: 'gemini-2.5-pro', // or gemini-2.5-flash
tools: [{ fileSearchTool: { fileSearchStores: [storeName] } }]
});
// ❌ WRONG
const model = ai.getGenerativeModel({
model: 'gemini-1.5-pro', // Not supported!
tools: [{ fileSearchTool: { fileSearchStores: [storeName] } }]
});
Load references/error-catalog.md for all 8 errors with detailed solutions including chunking, operation polling, metadata limits, and force delete requirements.
When to Use File Search
Use File Search When:
- Want fully managed RAG (no vector DB)
- Cost predictability matters (one-time indexing)
- Need 100+ file format support
- Citations are important (built-in grounding)
- Simple deployment is priority
- Documents are relatively static
Use Alternatives When:
Cloudflare Vectorize - Global edge performance, custom embeddings, real-time R2 updates OpenAI Files API - Assistants API, conversational threads, very large collections (10,000+)
Common Patterns
Pattern 1: Customer Support Knowledge Base
// Upload support docs with metadata
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('troubleshooting.pdf'),
config: {
displayName: 'Troubleshooting Guide',
customMetadata: {
doc_type: 'support',
category: 'troubleshooting',
language: 'en'
}
}
});
Pattern 2: Batch Document Upload
const files = ['doc1.pdf', 'doc2.md', 'doc3.docx'];
const uploadPromises = files.map(file =>
ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream(file),
config: { displayName: file }
})
);
const operations = await Promise.all(uploadPromises);
// Poll all operations
for (const op of operations) {
let operation = op;
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000));
operation = await ai.operations.get({ name: operation.name });
}
console.log('✅', operation.response.displayName);
}
Pattern 3: Document Update Flow
// 1. List existing documents
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
});
// 2. Delete old version
const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf');
if (oldDoc) {
await ai.fileSearchStores.documents.delete({
name: oldDoc.name,
force: true
});
}
// 3. Upload new version
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('manual-v2.pdf'),
config: {
displayName: 'manual.pdf',
customMetadata: {
version: '2.0',
updated_at: new Date().toISOString()
}
}
});
// 4. Poll until done
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000));
operation = await ai.operations.get({ name: operation.name });
}
Load references/setup-guide.md for additional patterns including code documentation search and internal knowledge bases.
When to Load References
Load references/setup-guide.md when:
- First-time File Search setup
- Need step-by-step walkthrough with all configuration options
- Configuring batch upload strategies
- Production deployment checklist
- Complete API initialization patterns
Load references/error-catalog.md when:
- Encountering any of 8 common errors
- Need detailed error solutions with code examples
- Prevention checklist required
- Troubleshooting upload/query issues
- Understanding chunking, metadata, or cost calculation problems
Supported File Formats
100+ formats including:
- Documents: PDF, Word (.docx), Excel (.xlsx), PowerPoint (.pptx)
- Text: Markdown (.md), Plain text (.txt), JSON, CSV
- Code: Python, JavaScript, TypeScript, Java, C++, Go, Rust, etc.
Not supported: Images in PDFs (text extraction only), Audio files, Video files
Pricing
Indexing (one-time): $0.15 per 1M tokens Storage: Free (10 GB - 1 TB depending on tier) Query embeddings: Free (retrieved context counts as input tokens)
Example: 1,000-page document ≈ 500k tokens → Indexing cost: $0.075 → Storage: ~1.5 GB (3x multiplier)
Chunking Guidelines
Technical docs: 500 tokens/chunk, 50 overlap Prose: 800 tokens/chunk, 80 overlap Legal: 300 tokens/chunk, 30 overlap
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500, // Smaller = more precise
maxOverlapTokens: 50 // 10% overlap recommended
}
}
Resources
References (references/):
setup-guide.md- Complete setup walkthrough (authentication, store creation, file upload, batch patterns, production checklist)error-catalog.md- All 8 documented errors with solutions (immutability, storage, chunking, metadata, costs, polling, force delete, model compatibility)
Official Documentation:
- File Search Overview: https://ai.google.dev/api/file-search
- API Reference: https://ai.google.dev/api/file-search/documents
- Blog Post: https://blog.google/technology/developers/file-search-gemini-api/
Questions? Issues?
- Check
references/setup-guide.mdfor complete setup - Review
references/error-catalog.mdfor all 8 errors - Verify model version (must be Gemini 2.5)
- Check storage calculation (3x file size)