| name | ml-model-training |
| description | Train ML models with scikit-learn, PyTorch, TensorFlow. Use for classification/regression, neural networks, hyperparameter tuning, or encountering overfitting, underfitting, convergence issues. |
| keywords | machine learning, model training, PyTorch, TensorFlow, scikit-learn, neural networks, deep learning, classification, regression, hyperparameter tuning, cross-validation, model evaluation, data preprocessing, feature engineering |
| license | MIT |
ML Model Training
Train machine learning models with proper data handling and evaluation.
Training Workflow
- Data Preparation → 2. Feature Engineering → 3. Model Selection → 4. Training → 5. Evaluation
Data Preparation
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
# Load and clean data
df = pd.read_csv('data.csv')
df = df.dropna()
# Encode categorical variables
le = LabelEncoder()
df['category'] = le.fit_transform(df['category'])
# Split data (70/15/15)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5)
# Scale features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
Scikit-learn Training
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_val)
print(classification_report(y_val, y_pred))
PyTorch Training
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_dim, 64),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.layers(x)
model = Model(X_train.shape[1])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.BCELoss()
for epoch in range(100):
model.train()
optimizer.zero_grad()
output = model(X_train_tensor)
loss = criterion(output, y_train_tensor)
loss.backward()
optimizer.step()
Evaluation Metrics
| Task | Metrics |
|---|---|
| Classification | Accuracy, Precision, Recall, F1, AUC-ROC |
| Regression | MSE, RMSE, MAE, R² |
Complete Framework Examples
PyTorch: See references/pytorch-training.md for complete training with:
- Custom model classes with BatchNorm and Dropout
- Training/validation loops with early stopping
- Learning rate scheduling
- Model checkpointing
- Full evaluation with classification report
TensorFlow/Keras: See references/tensorflow-keras.md for:
- Sequential model architecture
- Callbacks (EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard)
- Training history visualization
- TFLite conversion for mobile deployment
- Custom training loops
Best Practices
Do:
- Use cross-validation for robust evaluation
- Track experiments with MLflow
- Save model checkpoints regularly
- Monitor for overfitting
- Document hyperparameters
- Use 70/15/15 train/val/test split
Don't:
- Train without a validation set
- Ignore class imbalance
- Skip feature scaling
- Use test set for hyperparameter tuning
- Forget to set random seeds
Known Issues Prevention
1. Data Leakage
Problem: Scaling or transforming data before splitting leads to test set information leaking into training.
Solution: Always split data first, then fit transformers only on training data:
# ✅ Correct: Fit on train, transform train/val/test
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val) # Only transform
X_test = scaler.transform(X_test) # Only transform
# ❌ Wrong: Fitting on all data
X_all = scaler.fit_transform(X) # Leaks test info!
2. Class Imbalance Ignored
Problem: Training on imbalanced datasets (e.g., 95% class A, 5% class B) leads to models that predict only the majority class.
Solution: Use class weights or resampling:
from sklearn.utils.class_weight import compute_class_weight
# Compute class weights
class_weights = compute_class_weight('balanced', classes=np.unique(y_train), y=y_train)
model = RandomForestClassifier(class_weight='balanced')
# Or use SMOTE for oversampling minority class
from imblearn.over_sampling import SMOTE
smote = SMOTE()
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
3. Overfitting Due to No Regularization
Problem: Complex models memorize training data, perform poorly on validation/test sets.
Solution: Add regularization techniques:
# Dropout in PyTorch
nn.Dropout(0.3)
# L2 regularization in scikit-learn
RandomForestClassifier(max_depth=10, min_samples_split=20)
# Early stopping in Keras
from tensorflow.keras.callbacks import EarlyStopping
early_stop = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model.fit(X_train, y_train, validation_data=(X_val, y_val), callbacks=[early_stop])
4. Not Setting Random Seeds
Problem: Results are not reproducible across runs, making debugging and comparison impossible.
Solution: Set all random seeds:
import random
import numpy as np
import torch
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(42)
5. Using Test Set for Hyperparameter Tuning
Problem: Optimizing hyperparameters on test set leads to overfitting to test data.
Solution: Use validation set for tuning, test set only for final evaluation:
from sklearn.model_selection import GridSearchCV
# ✅ Correct: Tune on train+val, evaluate on test
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [5, 10, 15]}
grid_search = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train) # Cross-validation on training set
best_model = grid_search.best_estimator_
# Final evaluation on held-out test set
final_score = best_model.score(X_test, y_test)
When to Load References
Load reference files when you need:
- PyTorch implementation details: Load
references/pytorch-training.mdfor complete training loops with early stopping, learning rate scheduling, and checkpointing - TensorFlow/Keras patterns: Load
references/tensorflow-keras.mdfor callback usage, custom training loops, and mobile deployment with TFLite