| name | technology-benchmarking |
| description | Expert at comparing libraries and frameworks through parallel implementation, performance benchmarking, code characteristic analysis, and evidence-based technology selection. Activate when evaluating technologies, comparing alternatives, or making technology adoption decisions. |
Technology Benchmarking Skill
Expert knowledge in systematic technology comparison through parallel implementation, rigorous performance benchmarking, code characteristic analysis, and evidence-based decision-making for technology adoption.
Documentation Output Locations
This skill generates outputs in the following .orchestr8/docs/ locations:
- Technology comparison reports:
.orchestr8/docs/research/comparisons/ - Performance benchmarks:
.orchestr8/docs/performance/benchmarks/ - Architecture recommendations:
.orchestr8/docs/architecture/design/
Output Naming Convention
All outputs follow the pattern: [type]-[name]-YYYY-MM-DD.md
Example outputs:
.orchestr8/docs/research/assumptions/validation-microservices-2025-01-15.md.orchestr8/docs/research/poc/poc-event-sourcing-2025-01-15.md.orchestr8/docs/patterns/library/pattern-factory-2025-01-15.md
When to Use This Skill
Use technology-benchmarking for:
- ✅ Comparing multiple libraries or frameworks for a specific use case
- ✅ Evaluating technology choices before major adoption
- ✅ Performance benchmarking of alternative solutions
- ✅ Analyzing code characteristics (bundle size, API ergonomics, learning curve)
- ✅ Making evidence-based technology decisions
- ✅ Validating technology migration decisions
- ✅ Creating technology comparison reports for stakeholders
- ✅ Building proof-of-concept implementations for comparison
Less critical for:
- ❌ Already-decided technology choices
- ❌ Simple library updates within same ecosystem
- ❌ Single-option scenarios (no alternatives)
- ❌ Technology choices dictated by organizational standards
Core Benchmarking Methodology
Phase 1: Define Comparison Criteria
Objective: Establish clear, measurable criteria for technology comparison.
Criteria Categories:
interface BenchmarkCriteria {
performance: {
throughput: boolean; // Requests/operations per second
latency: boolean; // Response time (p50, p95, p99)
memoryUsage: boolean; // RAM consumption
cpuUsage: boolean; // CPU utilization
bundleSize: boolean; // Frontend: bundle impact
coldStart: boolean; // Serverless: cold start time
};
developer_experience: {
learningCurve: boolean; // Time to productivity
apiErgonomics: boolean; // API design quality
documentation: boolean; // Docs quality and completeness
typeScript: boolean; // TypeScript support quality
debugging: boolean; // Debugging experience
tooling: boolean; // IDE support, linters, etc.
};
ecosystem: {
maturity: boolean; // Library age and stability
communitySize: boolean; // GitHub stars, npm downloads
maintenance: boolean; // Update frequency, responsiveness
plugins: boolean; // Ecosystem of extensions
migration: boolean; // Migration path complexity
};
code_characteristics: {
loc: boolean; // Lines of code for same feature
complexity: boolean; // Cyclomatic complexity
testability: boolean; // Ease of testing
readability: boolean; // Code readability score
boilerplate: boolean; // Amount of boilerplate required
};
compatibility: {
browsers: boolean; // Browser support matrix
nodeVersions: boolean; // Node.js version support
frameworks: boolean; // Framework compatibility
platforms: boolean; // Platform support (web, mobile, etc.)
};
security: {
vulnerabilities: boolean; // Known CVEs
dependencies: boolean; // Dependency count and health
updates: boolean; // Security patch responsiveness
audit: boolean; // npm audit / security scanning
};
}
Example Criteria Set:
# Comparing React State Management Libraries
## Benchmark: Redux vs Zustand vs Jotai vs Recoil
### Selected Criteria:
**Performance (40%)**
- ⚡ Re-render count (critical)
- ⚡ Update latency (important)
- ⚡ Bundle size (critical for mobile)
**Developer Experience (35%)**
- 📚 Learning curve (important)
- 🎨 API ergonomics (critical)
- 📝 TypeScript support (critical)
- 🐛 Debugging tools (important)
**Code Characteristics (15%)**
- 📏 Lines of code (important)
- 🧩 Boilerplate required (critical)
- ✅ Testability (important)
**Ecosystem (10%)**
- 👥 Community size (important)
- 🔧 Maintenance (critical)
- 🔌 Plugin ecosystem (nice-to-have)
Expected Outputs:
- Weighted criteria matrix
- Stakeholder-approved criteria
- Measurement methodology
- Success thresholds
Phase 2: Parallel Implementation
Objective: Implement identical features using each technology candidate.
Implementation Strategy:
# Create isolated implementation directories
mkdir -p benchmark/
cd benchmark/
# Technology A
mkdir redux-implementation/
cd redux-implementation/
npm init -y
npm install redux react-redux @reduxjs/toolkit
# Implement feature...
# Technology B
cd ..
mkdir zustand-implementation/
cd zustand-implementation/
npm init -y
npm install zustand
# Implement same feature...
# Technology C
cd ..
mkdir jotai-implementation/
cd jotai-implementation/
npm init -y
npm install jotai
# Implement same feature...
# Technology D
cd ..
mkdir recoil-implementation/
cd recoil-implementation/
npm init -y
npm install recoil
# Implement same feature...
Feature Parity Checklist:
# Implementation Checklist
Ensure all implementations have:
- ✅ Same feature set (exact functionality)
- ✅ Same user interactions (identical UX)
- ✅ Same edge cases handled
- ✅ Same error handling
- ✅ Same optimization level (all basic, or all optimized)
- ✅ Same test coverage
- ✅ Same production readiness
Example: Todo App State Management
// Redux Implementation
// store.ts
import { configureStore, createSlice } from '@reduxjs/toolkit';
const todosSlice = createSlice({
name: 'todos',
initialState: [],
reducers: {
addTodo: (state, action) => {
state.push({ id: Date.now(), text: action.payload, completed: false });
},
toggleTodo: (state, action) => {
const todo = state.find(t => t.id === action.payload);
if (todo) todo.completed = !todo.completed;
},
removeTodo: (state, action) => {
return state.filter(t => t.id !== action.payload);
}
}
});
export const { addTodo, toggleTodo, removeTodo } = todosSlice.actions;
export const store = configureStore({ reducer: { todos: todosSlice.reducer } });
// TodoList.tsx (43 lines)
import { useSelector, useDispatch } from 'react-redux';
import { addTodo, toggleTodo, removeTodo } from './store';
export function TodoList() {
const todos = useSelector((state) => state.todos);
const dispatch = useDispatch();
return (
<div>
<input onKeyPress={(e) => {
if (e.key === 'Enter') {
dispatch(addTodo(e.target.value));
e.target.value = '';
}
}} />
<ul>
{todos.map(todo => (
<li key={todo.id}>
<input
type="checkbox"
checked={todo.completed}
onChange={() => dispatch(toggleTodo(todo.id))}
/>
<span>{todo.text}</span>
<button onClick={() => dispatch(removeTodo(todo.id))}>Delete</button>
</li>
))}
</ul>
</div>
);
}
// Zustand Implementation
// store.ts
import create from 'zustand';
export const useTodoStore = create((set) => ({
todos: [],
addTodo: (text) => set((state) => ({
todos: [...state.todos, { id: Date.now(), text, completed: false }]
})),
toggleTodo: (id) => set((state) => ({
todos: state.todos.map(t => t.id === id ? { ...t, completed: !t.completed } : t)
})),
removeTodo: (id) => set((state) => ({
todos: state.todos.filter(t => t.id !== id)
}))
}));
// TodoList.tsx (37 lines)
import { useTodoStore } from './store';
export function TodoList() {
const { todos, addTodo, toggleTodo, removeTodo } = useTodoStore();
return (
<div>
<input onKeyPress={(e) => {
if (e.key === 'Enter') {
addTodo(e.target.value);
e.target.value = '';
}
}} />
<ul>
{todos.map(todo => (
<li key={todo.id}>
<input
type="checkbox"
checked={todo.completed}
onChange={() => toggleTodo(todo.id)}
/>
<span>{todo.text}</span>
<button onClick={() => removeTodo(todo.id)}>Delete</button>
</li>
))}
</ul>
</div>
);
}
Expected Outputs:
- Functionally identical implementations
- Side-by-side code comparison
- Lines of code metrics
- Boilerplate analysis
Phase 3: Performance Benchmarking
Objective: Measure and compare performance characteristics objectively.
Benchmark Suite Setup:
// benchmark/performance-suite.ts
import { performance } from 'perf_hooks';
import Benchmark from 'benchmark';
interface BenchmarkResult {
name: string;
opsPerSecond: number;
mean: number;
standardDeviation: number;
marginOfError: number;
relativeMarginOfError: number;
sampleSize: number;
}
class TechnologyBenchmark {
private suite = new Benchmark.Suite();
private results: BenchmarkResult[] = [];
add(name: string, fn: () => void): this {
this.suite.add(name, fn);
return this;
}
async run(): Promise<BenchmarkResult[]> {
return new Promise((resolve) => {
this.suite
.on('cycle', (event: any) => {
const bench = event.target;
this.results.push({
name: bench.name,
opsPerSecond: bench.hz,
mean: bench.stats.mean,
standardDeviation: bench.stats.deviation,
marginOfError: bench.stats.moe,
relativeMarginOfError: bench.stats.rme,
sampleSize: bench.stats.sample.length
});
})
.on('complete', () => {
resolve(this.results);
})
.run({ async: true });
});
}
}
// Usage
const benchmark = new TechnologyBenchmark();
benchmark
.add('Redux: Add 1000 todos', () => {
for (let i = 0; i < 1000; i++) {
store.dispatch(addTodo(`Todo ${i}`));
}
})
.add('Zustand: Add 1000 todos', () => {
for (let i = 0; i < 1000; i++) {
useTodoStore.getState().addTodo(`Todo ${i}`);
}
});
const results = await benchmark.run();
console.table(results);
Performance Metrics to Collect:
interface PerformanceMetrics {
// Throughput
operationsPerSecond: number;
// Latency
latency: {
p50: number; // Median
p95: number; // 95th percentile
p99: number; // 99th percentile
max: number; // Worst case
};
// Resource Usage
memory: {
initial: number; // Baseline memory (MB)
peak: number; // Peak memory (MB)
average: number; // Average during test (MB)
leaks: boolean; // Memory leak detected?
};
cpu: {
average: number; // Average CPU % during test
peak: number; // Peak CPU %
};
// Frontend Specific
frontend?: {
bundleSize: {
minified: number; // Minified size (KB)
gzipped: number; // Gzipped size (KB)
treeshaken: number; // After tree-shaking (KB)
};
renderCount: number; // Number of re-renders
loadTime: number; // Initial load time (ms)
};
// Backend Specific
backend?: {
coldStart: number; // Cold start time (ms)
warmStart: number; // Warm start time (ms)
connectionPool: number; // Connection pool efficiency
};
}
Benchmarking Tools:
# Frontend Benchmarking
# Bundle size analysis
npx webpack-bundle-analyzer build/stats.json
# Lighthouse performance
npx lighthouse https://localhost:3000 --output html --output-path ./report.html
# React DevTools Profiler (programmatic)
npm install --save-dev react-addons-perf
# Backend Benchmarking
# HTTP load testing
npm install -g autocannon
autocannon -c 100 -d 30 http://localhost:3000/api/todos
# Detailed profiling
node --prof app.js
node --prof-process isolate-*.log > profile.txt
# Memory leak detection
node --inspect app.js
# Use Chrome DevTools Memory Profiler
# Database query performance
npm install -g clinic
clinic doctor -- node app.js
React Component Re-render Tracking:
// benchmark/render-counter.tsx
import { useEffect, useRef } from 'react';
export function useRenderCount(componentName: string) {
const renderCount = useRef(0);
useEffect(() => {
renderCount.current += 1;
console.log(`${componentName} rendered ${renderCount.current} times`);
});
return renderCount.current;
}
// Usage in TodoList
export function TodoList() {
const renderCount = useRenderCount('TodoList');
// ... rest of component
}
Expected Outputs:
- Performance comparison table
- Latency distribution graphs
- Resource usage charts
- Bundle size comparison
- Re-render analysis
Phase 4: Code Characteristic Analysis
Objective: Analyze qualitative aspects of code with each technology.
Analysis Dimensions:
interface CodeCharacteristics {
// Quantity
linesOfCode: {
application: number; // Application code
tests: number; // Test code
config: number; // Configuration
total: number; // Total
};
// Complexity
complexity: {
cyclomatic: number; // Cyclomatic complexity
cognitive: number; // Cognitive complexity
nesting: number; // Max nesting depth
};
// Maintainability
maintainability: {
duplication: number; // Code duplication %
comments: number; // Comment ratio %
readability: number; // Readability score (0-100)
};
// Type Safety
typeSafety: {
typeScript: boolean; // Native TS support?
typeCoverage: number; // Type coverage %
typeErrors: number; // Type errors count
anyUsage: number; // Usage of 'any' type
};
// Testing
testability: {
testable: boolean; // Easy to test?
mockingRequired: boolean; // Mocking needed?
testLOC: number; // Lines in tests
coveragePossible: number; // Max achievable coverage %
};
// API Design
api: {
verbosity: number; // API verbosity (1-10)
consistency: number; // API consistency (1-10)
discoverability: number; // How easy to discover features (1-10)
idiomaticness: number; // How idiomatic for language (1-10)
};
}
Code Metrics Collection:
# Lines of Code
cloc redux-implementation/ zustand-implementation/ jotai-implementation/
# Complexity Metrics
npx complexity-report --format json redux-implementation/src/ > redux-complexity.json
npx complexity-report --format json zustand-implementation/src/ > zustand-complexity.json
# Type Coverage
npx type-coverage --detail redux-implementation/src/
npx type-coverage --detail zustand-implementation/src/
# Maintainability Index
npm install -g radon-cli
radon cc -a redux-implementation/src/ > redux-maintainability.txt
# Code Duplication
jscpd redux-implementation/src/ zustand-implementation/src/
Developer Experience Survey:
# Developer Experience Survey
After implementing same feature with each technology, rate 1-10:
## Redux
- **Learning Curve**: How long to become productive? (1=months, 10=minutes)
- **API Ergonomics**: How pleasant is the API? (1=frustrating, 10=delightful)
- **Boilerplate**: How much boilerplate required? (1=excessive, 10=minimal)
- **Debugging**: How easy to debug? (1=nightmare, 10=trivial)
- **Type Safety**: How good is TypeScript integration? (1=fighting types, 10=types help)
- **Documentation**: How good are docs? (1=nonexistent, 10=comprehensive)
- **Confidence**: How confident in production readiness? (1=scared, 10=rock solid)
## Zustand
[Same questions...]
## Jotai
[Same questions...]
## Recoil
[Same questions...]
Expected Outputs:
- Code metrics comparison table
- Developer experience ratings
- API design comparison
- Type safety analysis
- Testability assessment
Phase 5: Ecosystem Analysis
Objective: Evaluate the broader ecosystem and long-term viability.
Ecosystem Metrics:
interface EcosystemMetrics {
// Popularity
popularity: {
githubStars: number;
npmDownloads: number; // Weekly downloads
stackOverflowQuestions: number;
trendDirection: 'rising' | 'stable' | 'declining';
};
// Maturity
maturity: {
firstRelease: Date;
latestRelease: Date;
majorVersions: number;
breakingChanges: number; // In last 2 years
stability: 'experimental' | 'beta' | 'stable' | 'mature';
};
// Maintenance
maintenance: {
commitFrequency: number; // Commits per month
issueResponseTime: number; // Hours to first response
prMergeTime: number; // Hours to merge
openIssues: number;
closedIssues: number;
maintainers: number;
lastCommit: Date;
};
// Dependencies
dependencies: {
directDeps: number;
totalDeps: number; // Including transitive
vulnerabilities: number;
outdatedDeps: number;
depHealth: number; // 0-100 score
};
// Community
community: {
contributors: number;
companyBacked: boolean;
corporations: string[]; // Companies using
tutorials: number; // Quality tutorials available
books: number; // Books published
courses: number; // Online courses
};
// Ecosystem
plugins: {
official: number; // Official plugins
community: number; // Community plugins
quality: number; // Avg quality score (0-100)
};
}
Data Collection Script:
// benchmark/ecosystem-analysis.ts
import { Octokit } from '@octokit/rest';
import axios from 'axios';
async function analyzeEcosystem(repo: string, npmPackage: string) {
const octokit = new Octokit({ auth: process.env.GITHUB_TOKEN });
// GitHub metrics
const { data: repoData } = await octokit.repos.get({
owner: repo.split('/')[0],
repo: repo.split('/')[1]
});
const { data: commits } = await octokit.repos.listCommits({
owner: repo.split('/')[0],
repo: repo.split('/')[1],
per_page: 100
});
// NPM metrics
const npmData = await axios.get(`https://api.npmjs.org/downloads/point/last-week/${npmPackage}`);
const npmInfo = await axios.get(`https://registry.npmjs.org/${npmPackage}`);
// Stack Overflow metrics
const soData = await axios.get(
`https://api.stackexchange.com/2.3/search?order=desc&sort=activity&tagged=${npmPackage}&site=stackoverflow`
);
return {
popularity: {
githubStars: repoData.stargazers_count,
npmDownloads: npmData.data.downloads,
stackOverflowQuestions: soData.data.total,
trendDirection: calculateTrend(commits)
},
maturity: {
firstRelease: new Date(repoData.created_at),
latestRelease: new Date(npmInfo.data.time.modified),
majorVersions: countMajorVersions(npmInfo.data.versions)
},
maintenance: {
commitFrequency: commits.length / 3, // Last ~3 months
openIssues: repoData.open_issues_count,
lastCommit: new Date(commits[0].commit.author.date)
}
};
}
// Compare all technologies
const technologies = [
{ repo: 'reduxjs/redux', npm: 'redux' },
{ repo: 'pmndrs/zustand', npm: 'zustand' },
{ repo: 'pmndrs/jotai', npm: 'jotai' },
{ repo: 'facebookexperimental/Recoil', npm: 'recoil' }
];
const ecosystemComparison = await Promise.all(
technologies.map(t => analyzeEcosystem(t.repo, t.npm))
);
console.table(ecosystemComparison);
Expected Outputs:
- Ecosystem comparison matrix
- Trend analysis charts
- Maintenance health report
- Community size comparison
- Long-term viability assessment
Phase 6: Evidence-Based Decision
Objective: Synthesize all data into actionable recommendation.
Decision Matrix:
interface DecisionMatrix {
technology: string;
scores: {
performance: number; // 0-100
developerExperience: number; // 0-100
codeQuality: number; // 0-100
ecosystem: number; // 0-100
security: number; // 0-100
};
weights: {
performance: number; // e.g., 0.3 (30%)
developerExperience: number; // e.g., 0.25 (25%)
codeQuality: number; // e.g., 0.2 (20%)
ecosystem: number; // e.g., 0.15 (15%)
security: number; // e.g., 0.1 (10%)
};
weightedScore: number; // Final score 0-100
rank: number; // 1st, 2nd, 3rd, etc.
recommendation: string; // Recommend | Consider | Avoid
}
function calculateWeightedScore(
scores: DecisionMatrix['scores'],
weights: DecisionMatrix['weights']
): number {
return (
scores.performance * weights.performance +
scores.developerExperience * weights.developerExperience +
scores.codeQuality * weights.codeQuality +
scores.ecosystem * weights.ecosystem +
scores.security * weights.security
);
}
Recommendation Report Template:
# Technology Benchmark Report
## State Management Library Comparison
**Date**: 2025-01-15
**Evaluator**: Engineering Team
**Use Case**: E-commerce product catalog state management
---
## Executive Summary
After comprehensive benchmarking of 4 state management libraries (Redux, Zustand, Jotai, Recoil), we recommend **Zustand** for our use case.
**Key Findings:**
- ✅ Zustand: Best overall balance of performance, DX, and simplicity
- ⚠️ Redux: Excellent ecosystem but significant boilerplate overhead
- ⚠️ Jotai: Great DX but smaller ecosystem and newer/less proven
- ❌ Recoil: Experimental status and Facebook-specific concerns
**Weighted Score:**
1. Zustand: 87/100
2. Jotai: 79/100
3. Redux: 76/100
4. Recoil: 68/100
---
## Detailed Comparison
### Performance (Weight: 30%)
| Metric | Redux | Zustand | Jotai | Recoil |
|--------|-------|---------|-------|--------|
| **Ops/sec** | 8,450 | 12,300 | 11,800 | 9,200 |
| **Re-renders** | 47 | 12 | 15 | 18 |
| **Bundle Size** | 42 KB | 3.2 KB | 4.1 KB | 18 KB |
| **Memory Usage** | 18 MB | 8 MB | 9 MB | 12 MB |
| **Score** | 72 | 95 | 91 | 78 |
**Winner**: Zustand (95/100)
- 45% faster than Redux
- 87% smaller bundle size
- 74% fewer re-renders
### Developer Experience (Weight: 25%)
| Aspect | Redux | Zustand | Jotai | Recoil |
|--------|-------|---------|-------|--------|
| **Learning Curve** | 4/10 | 9/10 | 8/10 | 7/10 |
| **API Ergonomics** | 6/10 | 10/10 | 9/10 | 8/10 |
| **Boilerplate** | 3/10 | 10/10 | 9/10 | 8/10 |
| **TypeScript** | 8/10 | 9/10 | 10/10 | 7/10 |
| **Debugging** | 9/10 | 7/10 | 7/10 | 8/10 |
| **Score** | 60 | 90 | 86 | 76 |
**Winner**: Zustand (90/100)
- Minimal boilerplate (6 lines vs 43 lines in Redux)
- Intuitive hook-based API
- Excellent TypeScript inference
### Code Quality (Weight: 20%)
| Metric | Redux | Zustand | Jotai | Recoil |
|--------|-------|---------|-------|--------|
| **Lines of Code** | 127 | 68 | 74 | 81 |
| **Complexity** | 12 | 4 | 5 | 6 |
| **Testability** | 9/10 | 10/10 | 9/10 | 8/10 |
| **Readability** | 7/10 | 10/10 | 9/10 | 8/10 |
| **Score** | 75 | 95 | 88 | 82 |
**Winner**: Zustand (95/100)
- 46% less code than Redux
- 67% lower complexity
- Most readable implementation
### Ecosystem (Weight: 15%)
| Metric | Redux | Zustand | Jotai | Recoil |
|--------|-------|---------|-------|--------|
| **GitHub Stars** | 60.5k | 38.2k | 16.8k | 19.2k |
| **Weekly Downloads** | 8.2M | 2.1M | 580k | 310k |
| **Maturity** | 10/10 | 8/10 | 6/10 | 5/10 |
| **Maintenance** | 9/10 | 10/10 | 9/10 | 6/10 |
| **Plugins** | 10/10 | 7/10 | 6/10 | 5/10 |
| **Score** | 95 | 82 | 68 | 58 |
**Winner**: Redux (95/100)
- Most mature and battle-tested
- Largest ecosystem
- Most corporate adoption
### Security (Weight: 10%)
| Metric | Redux | Zustand | Jotai | Recoil |
|--------|-------|---------|-------|--------|
| **Vulnerabilities** | 0 | 0 | 0 | 0 |
| **Dependencies** | 3 | 0 | 0 | 8 |
| **Audit Score** | 95 | 100 | 100 | 85 |
| **Score** | 95 | 100 | 100 | 85 |
**Winner**: Zustand & Jotai (100/100)
- Zero dependencies
- No known vulnerabilities
---
## Final Recommendation
### Primary Recommendation: Zustand
**Rationale:**
- Best overall balance across all criteria
- Exceptional developer experience (90/100)
- Top performance (95/100)
- Excellent code quality (95/100)
- Growing, healthy ecosystem (82/100)
- Perfect security score (100/100)
**Trade-offs:**
- Smaller ecosystem than Redux (but sufficient for our needs)
- Fewer learning resources (but simple enough to not be a blocker)
**Adoption Plan:**
1. Pilot Zustand in 2 new features (Sprint 1-2)
2. Gather team feedback
3. Migration guide for existing Redux stores (Sprint 3)
4. Gradual migration over 6 months
### Alternative: Jotai
If atomic state management is required:
- Similar performance to Zustand
- More granular control
- Great TypeScript support
- Trade-off: Smaller ecosystem, newer library
### Not Recommended
**Redux**: Excessive boilerplate for our use case
**Recoil**: Experimental status, Facebook-specific concerns
---
## Appendices
### Appendix A: Full Performance Data
[Detailed charts and raw numbers]
### Appendix B: Code Samples
[Side-by-side implementations]
### Appendix C: Team Survey Results
[Developer feedback]
### Appendix D: Migration Estimate
[Effort and timeline for migration]
Expected Outputs:
- Executive summary with recommendation
- Detailed comparison across all dimensions
- Decision matrix with scores
- Risk assessment
- Adoption roadmap
Benchmarking Workflows
Workflow 1: Quick Comparison (2-4 hours)
Goal: Rapid assessment for low-stakes decision.
Steps:
Define Criteria (30 min)
- Select 3-5 key criteria
- Weight by importance
Parallel Implementation (90 min)
- Build minimal viable example
- Same feature, 2-3 technologies
- Focus on speed, not perfection
Quick Benchmarks (45 min)
- Bundle size
- Lines of code
- Basic performance test
- Developer feeling
Decision (15 min)
- Calculate scores
- Make recommendation
- Document rationale
Total Time: ~3 hours Use For: Low-risk technology choices
Workflow 2: Comprehensive Benchmark (1-2 weeks)
Goal: Deep analysis for high-stakes decision.
Steps:
Criteria & Planning (4 hours)
- Stakeholder interviews
- Comprehensive criteria
- Weighted decision matrix
- Success metrics
Parallel Implementation (40 hours)
- Production-quality examples
- Full feature parity
- Edge cases handled
- Tests included
Performance Benchmarking (16 hours)
- Comprehensive test suite
- Load testing
- Resource profiling
- Multiple scenarios
Code Analysis (8 hours)
- Metrics collection
- Complexity analysis
- Maintainability assessment
- Developer survey
Ecosystem Research (8 hours)
- Popularity metrics
- Community health
- Long-term viability
- Migration costs
Report & Decision (8 hours)
- Synthesize findings
- Create presentation
- Stakeholder review
- Final decision
Total Time: ~80 hours (2 weeks with 2 engineers) Use For: Major technology adoption, framework migrations
Workflow 3: Continuous Benchmarking
Goal: Ongoing monitoring of technology choices.
Setup:
# .github/workflows/benchmark.yml
name: Technology Benchmarks
on:
schedule:
- cron: '0 0 * * 0' # Weekly
workflow_dispatch: # Manual trigger
jobs:
benchmark:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Run Performance Benchmarks
run: npm run benchmark
- name: Collect Metrics
run: |
npm run benchmark:bundle-size
npm run benchmark:performance
npm run benchmark:ecosystem
- name: Compare to Baseline
run: node scripts/compare-benchmarks.js
- name: Generate Report
run: node scripts/generate-report.js
- name: Upload Results
uses: actions/upload-artifact@v3
with:
name: benchmark-results
path: benchmark-results/
- name: Alert on Regression
if: steps.compare.outputs.regression == 'true'
run: |
# Send alert to Slack/email
curl -X POST $SLACK_WEBHOOK -d '{"text":"Performance regression detected!"}'
Benefits:
- Detect performance regressions
- Track ecosystem health
- Validate technology choices over time
- Early warning for library issues
Best Practices
DO ✅
Benchmarking:
- Use identical features across all implementations
- Run benchmarks multiple times for statistical validity
- Test on production-like hardware and data
- Warm up before measuring (JIT compilation)
- Measure what matters to your use case
- Include both synthetic and real-world scenarios
- Document testing methodology clearly
- Account for network conditions (if applicable)
Implementation:
- Same optimization level across all implementations
- Production-ready code quality
- Include error handling
- Write tests for each implementation
- Use latest stable versions
- Follow official best practices for each tech
- Consult documentation and experts
- Pair program if learning new tech
Decision Making:
- Weight criteria based on actual business priorities
- Include stakeholders in criteria selection
- Consider total cost of ownership (not just dev time)
- Factor in team expertise and learning curve
- Assess long-term viability and exit costs
- Test migration path before committing
- Plan for gradual adoption
- Document decision rationale
DON'T ❌
Benchmarking:
- Don't use toy examples for production decisions
- Don't benchmark on developer machines (inconsistent)
- Don't cherry-pick favorable results
- Don't ignore outliers without investigation
- Don't test pre-release or alpha versions
- Don't compare apples to oranges (different features)
- Don't skip warming up (cold start bias)
- Don't forget to test failure scenarios
Implementation:
- Don't optimize one implementation more than others
- Don't use outdated patterns or anti-patterns
- Don't skip tests to save time
- Don't ignore official recommendations
- Don't mix stable and experimental versions
- Don't make unfair comparisons (expert vs novice code)
- Don't forget edge cases
- Don't skip error handling
Decision Making:
- Don't let personal preferences override data
- Don't ignore ecosystem health for shiny new tech
- Don't underestimate migration costs
- Don't forget about hiring and onboarding
- Don't chase benchmarks at expense of DX
- Don't commit to a technology without escape plan
- Don't skip stakeholder buy-in
- Don't make decision without considering team skill
Remember
- Fair Comparison: Identical features, same optimization, production quality
- Measure What Matters: Focus on criteria relevant to your use case
- Multiple Dimensions: Performance is just one aspect; consider DX, ecosystem, etc.
- Statistical Validity: Run benchmarks multiple times, account for variance
- Real-World Scenarios: Synthetic benchmarks miss important details
- Total Cost: Include learning curve, migration, maintenance in decision
- Team Input: Technology choice affects team productivity and satisfaction
- Evidence Over Opinion: Let data guide decision, not hype or bias
Technology benchmarking transforms subjective technology debates into objective, data-driven decisions, ensuring your team adopts technologies that truly deliver value for your specific context and constraints.