Claude Code Plugins

Community-maintained marketplace

Feedback

Expert assistance for building SignalWire AI Agents in Python. Automatically activates when working with AgentBase, SWAIG functions, skills, SWML, voice configuration, DataMap, or any signalwire_agents code. Provides patterns, best practices, and complete working examples.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name signalwire-agents-sdk
description Expert assistance for building SignalWire AI Agents in Python. Automatically activates when working with AgentBase, SWAIG functions, skills, SWML, voice configuration, DataMap, or any signalwire_agents code. Provides patterns, best practices, and complete working examples.

SignalWire AI Agents SDK Expert

You are an expert in the SignalWire AI Agents SDK for Python. You help developers build production-ready voice AI agents using SWML (SignalWire Markup Language) and SWAIG (SignalWire AI Gateway).

When This Skill Applies

Activate this skill when the user:

  • Imports from signalwire_agents or signalwire_agents.core
  • Creates classes extending AgentBase
  • Works with SWAIG functions, tools, or handlers
  • Configures voice, language, or TTS settings
  • Uses DataMap for server-side functions
  • Works with agent skills (built-in or custom)
  • Asks about SWML, prompts, or call flow
  • Deploys agents (serverless, Docker, multi-agent)

Core SDK Knowledge

Package Structure

# Main imports
from signalwire_agents import AgentBase
from signalwire_agents.core.function_result import SwaigFunctionResult
from signalwire_agents.core.data_map import DataMap

# For multi-agent deployments
from signalwire_agents import AgentServer

# For custom skills
from signalwire_agents.core.skill_base import SkillBase

# For workflows
from signalwire_agents.core.contexts import Context, Step, ContextBuilder

AgentBase - The Foundation

AgentBase is the main class for building agents. It combines multiple mixins:

  • PromptMixin: Prompt building (prompt_add_section, POM)
  • ToolMixin: SWAIG functions (define_tool, @tool)
  • SkillMixin: Skill management (add_skill, remove_skill)
  • AIConfigMixin: Voice, language, hints, parameters
  • WebMixin: HTTP endpoints and routing
  • AuthMixin: Basic auth, token security
  • StateMixin: Conversation state
  • ServerlessMixin: Lambda/Cloud Functions support

Constructor Parameters:

Parameter Type Default Description
name str required Agent identifier
route str "/" HTTP endpoint path
host str "0.0.0.0" Server bind address
port int 3000 Server port
basic_auth tuple None (username, password) for HTTP auth
auto_answer bool True Automatically answer calls
record_call bool False Enable call recording
record_format str "mp4" Recording format
record_stereo bool True Stereo recording

SWAIG Function Definition

Method 1: @tool Decorator (Recommended)

@AgentBase.tool(
    name="function_name",
    description="Clear description for the AI to understand when to call this",
    parameters={
        "param_name": {
            "type": "string",
            "description": "What this parameter represents"
        },
        "optional_param": {
            "type": "integer",
            "description": "Optional parameter",
            "default": 10
        }
    }
)
def function_name(self, args, raw_data):
    param = args.get("param_name")
    return SwaigFunctionResult(f"Result for {param}")

Method 2: define_tool() (Imperative)

def __init__(self):
    super().__init__(name="my-agent")

    self.define_tool(
        name="lookup_order",
        description="Look up an order by ID",
        parameters={
            "order_id": {
                "type": "string",
                "description": "The order ID to look up"
            }
        },
        handler=self.handle_lookup_order
    )

def handle_lookup_order(self, args, raw_data):
    order_id = args.get("order_id")
    # ... lookup logic
    return SwaigFunctionResult(f"Order {order_id} status: shipped")

Handler Signature:

def handler(self, args: dict, raw_data: dict) -> SwaigFunctionResult:
    # args: Parameters passed by the AI
    # raw_data: Full request including call_id, metadata, etc.
    pass

SwaigFunctionResult

The return type for all SWAIG function handlers.

from signalwire_agents.core.function_result import SwaigFunctionResult

# Simple response
return SwaigFunctionResult("The weather is sunny and 72°F")

# Response with action
return SwaigFunctionResult("Transferring you now").add_action(
    "transfer", {"dest": "tel:+15551234567"}
)

# Multiple actions (method chaining)
return (SwaigFunctionResult("Let me play some music while I transfer you")
    .add_action("play", {"url": "https://example.com/hold.mp3"})
    .add_action("transfer", {"dest": "sip:support@company.com"}))

# Post-process (AI responds before actions execute)
return SwaigFunctionResult("I'll transfer you to support", post_process=True).add_action(
    "transfer", {"dest": "tel:+15559876543"}
)

Common Actions:

Action Parameters Description
transfer dest Transfer call to destination
hangup reason End the call
play url, urls Play audio file(s)
set_global_data key-value pairs Update conversation data
toggle_functions active, inactive Enable/disable functions
playback_bg file, wait Background audio
stop_playback_bg - Stop background audio

Voice and Language Configuration

# Add a language with voice
self.add_language("English", "en-US", "rime.spore")

# Multiple languages
self.add_language("English", "en-US", "rime.spore")
self.add_language("Spanish", "es-MX", "rime.spore")

# Available TTS engines and example voices:
# - ElevenLabs: "elevenlabs.josh", "elevenlabs.rachel"
# - Google: "gcloud.en-US-Neural2-A"
# - Azure: "azure.en-US-JennyNeural"
# - Amazon: "polly.Matthew"
# - Cartesia: "cartesia.default"
# - Deepgram: "deepgram.aura-asteria-en"
# - OpenAI: "openai.nova"
# - Rime (default): "rime.spore", "rime.marsh"

Prompt Building

Method 1: prompt_add_section()

# Simple section
self.prompt_add_section("Role", "You are a helpful customer service agent.")

# Section with bullets
self.prompt_add_section(
    "Guidelines",
    body="Follow these rules:",
    bullets=[
        "Be friendly and professional",
        "Keep responses concise",
        "Ask clarifying questions when needed"
    ]
)

# Subsection
self.prompt_add_subsection(
    "Guidelines",
    "Escalation",
    body="Transfer to a human if the customer asks."
)

Method 2: Declarative PROMPT_SECTIONS

class MyAgent(AgentBase):
    PROMPT_SECTIONS = {
        "Role": "You are a helpful assistant.",
        "Guidelines": [
            "Be concise",
            "Be accurate",
            "Be helpful"
        ],
        "Personality": {
            "body": "You have a friendly demeanor.",
            "bullets": ["Use casual language", "Add appropriate humor"]
        }
    }

AI Parameters

self.set_params({
    # Speech detection
    "end_of_speech_timeout": 1000,      # ms of silence to end turn
    "attention_timeout": 10000,          # ms before "are you there?"
    "inactivity_timeout": 300000,        # ms before hanging up

    # Interruption handling
    "barge_match_string": "stop|cancel|help",
    "barge_min_words": 2,

    # AI behavior
    "ai_volume": 0,                       # -50 to 50 dB adjustment
    "local_tz": "America/New_York",

    # Energy detection
    "energy_threshold": 0.05             # 0.01-1.0, lower = more sensitive
})

Speech Recognition Hints

# Add hints for better recognition
self.add_hints(["SignalWire", "SWML", "SWAIG", "API"])

# Industry-specific hints
self.add_hints([
    "account number",
    "routing number",
    "checking",
    "savings"
])

Call Flow Customization

Control what happens before/after the AI conversation:

# Pre-answer: Play ringback while call rings
self.add_pre_answer_verb("play", {
    "urls": ["ring:us"],
    "auto_answer": False  # Required for pre-answer
})

# Post-answer: Welcome message before AI
self.add_post_answer_verb("play", {
    "url": "say:Thank you for calling. This call may be recorded."
})
self.add_post_answer_verb("sleep", {"time": 500})

# Post-AI: Cleanup after conversation ends
self.add_post_ai_verb("request", {
    "url": "https://api.example.com/call-complete",
    "method": "POST"
})
self.add_post_ai_verb("hangup", {})

Pre-answer safe verbs: transfer, execute, return, label, goto, request, switch, cond, if, eval, set, unset, hangup, send_sms, sleep

Skills System

Adding Built-in Skills:

# Web search
self.add_skill("web_search", {
    "api_key": "your-google-api-key",
    "search_engine_id": "your-cse-id"
})

# Weather
self.add_skill("weather_api", {
    "provider": "openweathermap",
    "api_key": "your-api-key",
    "units": "imperial"
})

# Date/time
self.add_skill("datetime", {"timezone": "America/New_York"})

# Math operations
self.add_skill("math")

Available Built-in Skills:

  • web_search - Google Custom Search
  • wikipedia_search - Wikipedia lookups
  • weather_api - Weather data
  • math - Mathematical operations
  • datetime - Date/time functions
  • native_vector_search - Local document search
  • swml_transfer - Call transfers
  • datasphere - Data integration

DataMap (Server-Side Functions)

For functions that don't need local handlers:

from signalwire_agents.core.data_map import DataMap

weather_func = (DataMap("get_weather")
    .purpose("Get current weather for a location")
    .parameter("city", "string", "City name", required=True)
    .webhook("GET", "https://api.weather.com/v1/current?q=${args.city}&key=KEY")
    .output(SwaigFunctionResult(
        "The weather in ${args.city} is ${response.condition} "
        "and ${response.temp_f}°F"
    ))
)

self.register_swaig_function(weather_func.to_swaig_function())

Multi-Agent Deployment

from signalwire_agents import AgentServer

server = AgentServer(host="0.0.0.0", port=3000)

server.register(SupportAgent(), "/support")
server.register(SalesAgent(), "/sales")
server.register(FAQAgent(), "/faq")

# Optionally serve static files (web UI)
server.serve_static_files("./web")

server.run()

Environment Variables

Common environment variables for configuration:

# SignalWire credentials (required for Fabric API)
export SIGNALWIRE_SPACE_NAME="myspace"
export SIGNALWIRE_PROJECT_ID="xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
export SIGNALWIRE_TOKEN="PTxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

# Proxy URL for SWML callbacks
export SWML_PROXY_URL_BASE="https://your-domain.com"

# Basic auth
export SWML_BASIC_AUTH_USER="agent"
export SWML_BASIC_AUTH_PASSWORD="secret"

# Debug webhooks
export DEBUG_WEBHOOK_URL="https://webhook.site/your-id"
export DEBUG_WEBHOOK_LEVEL="1"  # 0=off, 1=basic, 2=verbose

# Logging
export SWML_LOG_LEVEL="DEBUG"  # DEBUG, INFO, WARNING, ERROR

Debug Webhooks

Send real-time events to external URL for monitoring:

self.set_params({
    "debug_webhook_url": "https://webhook.site/your-id",
    "debug_webhook_level": 1  # 1=basic, 2=verbose
})

Debug levels:

  • 0: Off (default)
  • 1: Function calls, errors, state changes
  • 2: Full transcripts and payloads

Post-Prompt and Summaries

Get structured data when conversations end:

# Text summary
self.set_post_prompt("Summarize this conversation in 2-3 sentences.")

# Structured JSON
self.set_post_prompt(json_schema={
    "type": "object",
    "properties": {
        "resolved": {"type": "boolean"},
        "category": {"type": "string"},
        "summary": {"type": "string"}
    }
})

# Handle summary in your agent
def on_summary(self, summary=None, raw_data=None):
    if summary:
        self.log.info("call_complete", summary=summary)

SignalWire Platform Integration

Register your agent with SignalWire Fabric for phone/WebRTC access:

  1. Create External SWML Handler - Points SignalWire to your agent URL
  2. Create Subscriber - Gets an address like /public/my-agent
  3. Create Guest Token - For browser WebRTC connections
# Agent with basic auth for Fabric
class MyAgent(AgentBase):
    def __init__(self):
        super().__init__(
            name="my-agent",
            basic_auth=("user", "password")  # Embedded in Fabric URL
        )

See reference/signalwire-integration.md for complete Fabric API examples.

Dynamic Configuration

Override agent behavior per-request:

def on_swml_request(self, request_data=None, callback_path=None, request=None):
    """Called before SWML is generated for each request."""
    call_data = (request_data or {}).get("call", {})
    caller = call_data.get("from", "")

    # Customize based on caller
    if caller.startswith("+1555"):
        self.prompt_add_section("VIP", "This is a VIP customer.")

Code Generation Guidelines

Always Include

  1. Shebang and imports
  2. Class docstring
  3. super().__init__() call with name
  4. Language configuration
  5. At least one prompt section
  6. if __name__ == "__main__" block

Standard Template

#!/usr/bin/env python3
from signalwire_agents import AgentBase
from signalwire_agents.core.function_result import SwaigFunctionResult


class MyAgent(AgentBase):
    """Description of what this agent does."""

    def __init__(self):
        super().__init__(name="my-agent", port=3000)

        # Configure voice
        self.add_language("English", "en-US", "rime.spore")

        # Build prompt
        self.prompt_add_section("Role", "You are a helpful assistant.")
        self.prompt_add_section(
            "Guidelines",
            bullets=[
                "Be concise and helpful",
                "Ask clarifying questions when needed"
            ]
        )

        # Configure AI behavior
        self.set_params({
            "end_of_speech_timeout": 1000,
            "attention_timeout": 10000
        })

    @AgentBase.tool(
        name="example_function",
        description="Describe what this function does",
        parameters={
            "input": {
                "type": "string",
                "description": "The input to process"
            }
        }
    )
    def example_function(self, args, raw_data):
        """Handle the example_function call."""
        input_value = args.get("input", "")
        return SwaigFunctionResult(f"Processed: {input_value}")


if __name__ == "__main__":
    agent = MyAgent()
    agent.run()

Serverless Template (AWS Lambda / Google Cloud / Azure)

#!/usr/bin/env python3
"""Serverless handler for SignalWire agent."""

import os
from signalwire_agents import AgentBase, SwaigFunctionResult


class MyAgent(AgentBase):
    """Description of what this agent does."""

    def __init__(self):
        super().__init__(name="my-serverless-agent")

        # Configure voice
        self.add_language("English", "en-US", "rime.spore")

        # Build prompt
        self.prompt_add_section("Role", "You are a helpful assistant.")
        self._setup_functions()

    def _setup_functions(self):
        @self.tool(
            description="Describe what this function does",
            parameters={
                "type": "object",
                "properties": {
                    "input": {
                        "type": "string",
                        "description": "The input to process"
                    }
                },
                "required": ["input"]
            }
        )
        def example_function(args, raw_data):
            input_value = args.get("input", "")
            return SwaigFunctionResult(f"Processed: {input_value}")


# CRITICAL: Create agent instance OUTSIDE handler for cold start optimization
agent = MyAgent()


# AWS Lambda
def lambda_handler(event, context):
    return agent.run(event, context)


# Google Cloud Functions
def main(request):
    return agent.run(request)


# Azure Functions (requires: import azure.functions as func)
# def main(req: func.HttpRequest) -> func.HttpResponse:
#     return agent.run(req)

Key Differences from Server-Based:

  • Agent instantiated outside the handler function
  • Use agent.run(event, context) for Lambda, agent.run(request) for GCF
  • No port binding needed - HTTP trigger handles routing
  • Use @self.tool decorator inside _setup_functions() method (not @AgentBase.tool)

Common Mistakes to Avoid

  1. Missing language: Agent won't speak without add_language()
  2. Wrong handler signature: Must be (self, args, raw_data)
  3. Returning strings: Use SwaigFunctionResult, not plain strings
  4. Missing name: Constructor requires name parameter
  5. Vague descriptions: AI needs clear function descriptions to call correctly
  6. Forgetting super().init(): Will break mixin initialization

Testing

# Verify SWML output
swaig-test agent.py --dump-swml

# List registered functions
swaig-test agent.py --list-tools

# Execute a function
swaig-test agent.py --exec function_name --param_name "value"

# Test specific class in multi-class file
swaig-test agent.py --agent-class MyAgent

Troubleshooting

Problem Likely Cause Solution
Agent doesn't speak No language configured Add add_language()
Function never called Poor description Make description clearer
Parameters missing Schema format wrong Use JSON Schema format
Import error Wrong import path Use from signalwire_agents import AgentBase
Port in use Another process Change port or stop other process
Transfer fails Bad destination Use tel:+1... or sip:user@domain

Reference Files

For detailed API documentation, see:

Core Reference

  • reference/agent-base.md - Complete AgentBase reference
  • reference/swaig-functions.md - Function definition patterns
  • reference/function-result.md - SwaigFunctionResult actions
  • reference/agent-server.md - Multi-agent deployment and static files

Advanced Features

  • reference/datamap-advanced.md - DataMap expressions, webhooks, array processing
  • reference/contexts-steps.md - Workflow system with steps and navigation
  • reference/prefabs.md - Pre-built agents (InfoGatherer, Survey, Concierge, etc.)
  • reference/voice-configuration.md - TTS engines, voices, fillers, pronunciation
  • reference/dynamic-configuration.md - Per-request customization and routing
  • reference/skills-complete.md - All built-in skills and custom skill development
  • reference/sip-routing.md - SIP username-based routing
  • reference/bedrock-agent.md - Amazon Bedrock voice-to-voice integration

Deployment

  • reference/serverless.md - AWS Lambda, Google Cloud Functions, Azure, CGI
  • reference/environment-variables.md - Complete env var reference
  • reference/signalwire-integration.md - Fabric API, WebRTC, phone numbers
  • reference/webhooks-debugging.md - Debug webhooks, monitoring, troubleshooting

Patterns

Best practices and reusable patterns:

  • patterns/common-patterns.md - Frequently used patterns (lookup, transfer, confirmation)
  • patterns/error-handling.md - Error handling best practices
  • patterns/testing.md - Testing with swaig-test and pytest
  • patterns/security.md - Security best practices

Example Files

Working code examples:

  • examples/simple-agent.py - Basic agent template
  • examples/multi-agent-server.py - Multiple agents with static files
  • examples/webrtc-enabled-agent.py - Browser-based voice interaction
  • examples/faq-bot.py - FAQ bot with skills
  • examples/datamap-agent.py - Server-side functions with DataMap
  • examples/serverless-agent.py - AWS Lambda, Google Cloud Functions, Azure deployment

Troubleshooting

See troubleshooting.md for common issues and solutions.