Claude Code Plugins

Community-maintained marketplace

Feedback

Fast Python framework for building interactive web apps, dashboards, and data visualizations without HTML/CSS/JavaScript. Use when user wants to create data apps, ML demos, dashboards, data exploration tools, or interactive visualizations. Transforms Python scripts into web apps in minutes with automatic UI updates.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name streamlit
description Fast Python framework for building interactive web apps, dashboards, and data visualizations without HTML/CSS/JavaScript. Use when user wants to create data apps, ML demos, dashboards, data exploration tools, or interactive visualizations. Transforms Python scripts into web apps in minutes with automatic UI updates.

Streamlit

Overview

Streamlit is a Python framework for rapidly building and deploying interactive web applications for data science and machine learning. Create beautiful web apps with just Python - no frontend development experience required. Apps automatically update in real-time as code changes.

When to Use This Skill

Activate when the user:

  • Wants to build a web app, dashboard, or data visualization tool
  • Mentions Streamlit explicitly
  • Needs to create an ML/AI demo or prototype
  • Wants to visualize data interactively
  • Asks for a data exploration tool
  • Needs interactive widgets (sliders, buttons, file uploads)
  • Wants to share analysis results with stakeholders

Installation and Setup

Check if Streamlit is installed:

python3 -c "import streamlit; print(streamlit.__version__)"

If not installed:

pip3 install streamlit

Create and run your first app:

# Create app.py with Streamlit code
streamlit run app.py

The app opens automatically in your browser at http://localhost:8501

Basic App Structure

Every Streamlit app follows this simple pattern:

import streamlit as st

# Set page configuration (must be first Streamlit command)
st.set_page_config(
    page_title="My App",
    page_icon="📊",
    layout="wide"
)

# Title and description
st.title("My Data App")
st.write("Welcome to my interactive dashboard!")

# Your app code here
# Streamlit automatically reruns from top to bottom when widgets change

Core Capabilities

1. Displaying Text and Data

import streamlit as st, pandas as pd
# Text elements
st.title("Main Title")
st.header("Section Header")
st.subheader("Subsection Header")
st.text("Fixed-width text")
st.markdown("**Bold** and *italic* text")
st.caption("Small caption text")

# Code blocks
st.code("""
def hello():
    print("Hello, World!")
""", language="python")

# Display data
df = pd.DataFrame({
    'Column A': [1, 2, 3],
    'Column B': [4, 5, 6]
})

st.dataframe(df)  # Interactive table
st.table(df)      # Static table
st.json({'key': 'value'})  # JSON data

# Metrics
st.metric(
    label="Revenue",
    value="$1,234",
    delta="12%"
)

2. Interactive Widgets

import streamlit as st
# Text input
name = st.text_input("Enter your name")
email = st.text_input("Email", type="default")
password = st.text_input("Password", type="password")
text = st.text_area("Long text", height=100)

# Numbers
age = st.number_input("Age", min_value=0, max_value=120, value=25)
slider_val = st.slider("Select a value", 0, 100, 50)
range_val = st.slider("Select range", 0, 100, (25, 75))

# Selections
option = st.selectbox("Choose one", ["Option 1", "Option 2", "Option 3"])
options = st.multiselect("Choose multiple", ["A", "B", "C", "D"])
radio = st.radio("Pick one", ["Yes", "No", "Maybe"])

# Checkboxes
agree = st.checkbox("I agree to terms")
show_data = st.checkbox("Show raw data")

# Buttons
if st.button("Click me"):
    st.write("Button clicked!")

# Date and time
date = st.date_input("Select date")
time = st.time_input("Select time")

# File upload
uploaded_file = st.file_uploader("Choose a file", type=['csv', 'xlsx', 'txt'])
if uploaded_file is not None:
    df = pd.read_csv(uploaded_file)
    st.dataframe(df)

# Download button
st.download_button(
    label="Download data",
    data=df.to_csv(index=False),
    file_name="data.csv",
    mime="text/csv"
)

3. Charts and Visualizations

import streamlit as st
import pandas as pd, numpy as np, matplotlib.pyplot as plt
import plotly.express as px
# Sample data
df = pd.DataFrame({
    'x': range(10),
    'y': np.random.randn(10)
})

# Streamlit native charts
st.line_chart(df)
st.area_chart(df)
st.bar_chart(df)

# Scatter plot with map data
map_data = pd.DataFrame(
    np.random.randn(100, 2) / [50, 50] + [37.76, -122.4],
    columns=['lat', 'lon']
)
st.map(map_data)

# Matplotlib
fig, ax = plt.subplots()
ax.plot(df['x'], df['y'])
ax.set_title("Matplotlib Chart")
st.pyplot(fig)

# Plotly (interactive)
fig = px.scatter(df, x='x', y='y', title="Interactive Plotly Chart")
st.plotly_chart(fig, use_container_width=True)

# Altair, Bokeh, and other libraries also supported

4. Layout and Containers

import streamlit as st
# Columns
col1, col2, col3 = st.columns(3)
with col1:
    st.header("Column 1")
    st.write("Content here")
with col2:
    st.header("Column 2")
    st.write("More content")
with col3:
    st.header("Column 3")
    st.write("Even more")

# Tabs
tab1, tab2, tab3 = st.tabs(["Overview", "Data", "Settings"])
with tab1:
    st.write("Overview content")
with tab2:
    st.write("Data content")
with tab3:
    st.write("Settings content")

# Expander (collapsible section)
with st.expander("Click to expand"):
    st.write("Hidden content that can be expanded")

# Container
with st.container():
    st.write("This is inside a container")
    st.write("Another line")

# Sidebar
st.sidebar.title("Sidebar")
st.sidebar.selectbox("Choose option", ["A", "B", "C"])
st.sidebar.slider("Sidebar slider", 0, 100)

5. Status and Progress

import streamlit as st, time
# Success, info, warning, error messages
st.success("Success! Everything worked.")
st.info("This is an informational message.")
st.warning("This is a warning.")
st.error("This is an error message.")

# Progress bar
progress_bar = st.progress(0)
for i in range(100):
    time.sleep(0.01)
    progress_bar.progress(i + 1)

# Spinner (loading indicator)
with st.spinner("Processing..."):
    time.sleep(3)
st.success("Done!")

# Balloons (celebration)
st.balloons()

# Snow (celebration)
# st.snow()

6. Caching for Performance

import streamlit as st, pandas as pd, time

# Cache data loading (persists across reruns)
@st.cache_data
def load_data():
    time.sleep(2)  # Simulate slow data load
    return pd.read_csv('large_file.csv')

# Cache resource (connections, models)
@st.cache_resource
def load_model():
    # Load ML model (expensive operation)
    return load_my_model()

# Use cached data
df = load_data()  # Only loads once, then cached
model = load_model()  # Cached globally

st.write(f"Loaded {len(df)} rows")

7. Session State (Persistent Data)

import streamlit as st

# Initialize session state
if 'count' not in st.session_state:
    st.session_state.count = 0

# Increment counter
if st.button("Increment"):
    st.session_state.count += 1

st.write(f"Count: {st.session_state.count}")

# Store user data across reruns
if 'user_data' not in st.session_state:
    st.session_state.user_data = {}

name = st.text_input("Name")
if name:
    st.session_state.user_data['name'] = name
    st.write(f"Hello, {st.session_state.user_data['name']}!")

Common Patterns

Pattern 1: Data Dashboard

import streamlit as st, pandas as pd, plotly.express as px

st.set_page_config(page_title="Sales Dashboard", layout="wide")

# Sidebar filters
st.sidebar.header("Filters")
date_range = st.sidebar.date_input("Date Range", [])
category = st.sidebar.multiselect("Category", ["A", "B", "C"])

# Load data
@st.cache_data
def load_sales_data():
    return pd.read_csv('sales_data.csv')

df = load_sales_data()

# Apply filters
if date_range:
    df = df[df['date'].between(date_range[0], date_range[1])]
if category:
    df = df[df['category'].isin(category)]

# Metrics row
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Revenue", f"${df['revenue'].sum():,.0f}")
col2.metric("Orders", f"{len(df):,}")
col3.metric("Avg Order", f"${df['revenue'].mean():.2f}")
col4.metric("Top Product", df['product'].mode()[0])

# Charts
col1, col2 = st.columns(2)
with col1:
    st.subheader("Revenue by Category")
    fig = px.bar(df.groupby('category')['revenue'].sum().reset_index(),
                 x='category', y='revenue')
    st.plotly_chart(fig, use_container_width=True)

with col2:
    st.subheader("Revenue Trend")
    fig = px.line(df.groupby('date')['revenue'].sum().reset_index(),
                  x='date', y='revenue')
    st.plotly_chart(fig, use_container_width=True)

# Data table
with st.expander("View Raw Data"):
    st.dataframe(df)

Pattern 2: Data Explorer

import streamlit as st, pandas as pd, plotly.express as px

st.title("📊 Data Explorer")

# File upload
uploaded_file = st.file_uploader("Upload CSV", type=['csv'])

if uploaded_file:
    df = pd.read_csv(uploaded_file)

    # Show basic info
    st.subheader("Dataset Overview")
    col1, col2, col3 = st.columns(3)
    col1.metric("Rows", len(df))
    col2.metric("Columns", len(df.columns))
    col3.metric("Memory", f"{df.memory_usage(deep=True).sum() / 1024**2:.2f} MB")

    # Column selection
    st.subheader("Explore Data")
    columns = st.multiselect("Select columns", df.columns.tolist(), default=df.columns.tolist()[:5])

    if columns:
        st.dataframe(df[columns])

        # Statistics
        st.subheader("Statistics")
        st.write(df[columns].describe())

        # Visualization
        st.subheader("Visualize")
        col1, col2 = st.columns(2)

        with col1:
            x_col = st.selectbox("X-axis", columns)
        with col2:
            y_col = st.selectbox("Y-axis", columns)

        chart_type = st.radio("Chart Type", ["Scatter", "Line", "Bar"])

        if chart_type == "Scatter":
            fig = px.scatter(df, x=x_col, y=y_col)
        elif chart_type == "Line":
            fig = px.line(df, x=x_col, y=y_col)
        else:
            fig = px.bar(df, x=x_col, y=y_col)

        st.plotly_chart(fig, use_container_width=True)

Pattern 3: Multi-Page App

Create a multi-page app with file structure:

app/
├── main.py
└── pages/
    ├── 1_📊_Dashboard.py
    ├── 2_📈_Analytics.py
    └── 3_⚙️_Settings.py

Main page (main.py):

import streamlit as st
st.set_page_config(page_title="Multi-Page App", page_icon="🏠")

st.title("Welcome to My App")
st.sidebar.success("Select a page above.")

st.markdown("""
This is the home page. Navigate using the sidebar.
""")

Pages automatically appear in the sidebar. Each page is a separate Python file.

Form Handling

import streamlit as st
# Forms prevent rerun on every widget change
with st.form("my_form"):
    st.write("Fill out the form")

    name = st.text_input("Name")
    age = st.number_input("Age", min_value=0, max_value=120)
    favorite_color = st.selectbox("Favorite Color", ["Red", "Green", "Blue"])

    # Form submit button
    submitted = st.form_submit_button("Submit")

    if submitted:
        st.write(f"Name: {name}")
        st.write(f"Age: {age}")
        st.write(f"Color: {favorite_color}")

Best Practices

  1. Use caching - Cache expensive operations with @st.cache_data and @st.cache_resource
  2. Session state for persistence - Use st.session_state to persist data across reruns
  3. Organize with containers - Use columns, tabs, and expanders for clean layouts
  4. Forms for multiple inputs - Prevent reruns with forms when collecting multiple inputs
  5. Wide layout for dashboards - Use st.set_page_config(layout="wide") for dashboards
  6. Sidebar for controls - Put filters and settings in the sidebar
  7. Progress indicators - Show spinners for long operations

Common Issues

Issue: App reruns on every interaction

Use st.form() to batch inputs or st.session_state to control behavior.

Issue: Slow performance

Cache expensive operations:

@st.cache_data
def expensive_computation(param):
    # Your code here
    return result

Issue: State not persisting

Use session state:

if 'my_var' not in st.session_state:
    st.session_state.my_var = initial_value

Resources