Claude Code Plugins

Community-maintained marketplace

Feedback

Use when performing mathematical physics computations - Lie algebras, quantum chemistry, neural operators, theorem proving, or scientific validation. Provides guidance on Theory2 CLI usage, computational workflows, and verification methodology.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name theory2-physics
description Use when performing mathematical physics computations - Lie algebras, quantum chemistry, neural operators, theorem proving, or scientific validation. Provides guidance on Theory2 CLI usage, computational workflows, and verification methodology.
version 1.0.0

Theory2 Mathematical Physics Tooling

Master the Theory2 suite for mathematical physics computation.

Quick Reference

All commands use the pattern:

/home/mikeb/theory2/.venv/bin/theory --json <group> <action> [options]

Always use --json for structured, parseable output.

Module Selection Guide

Task Module Key Commands
Lie algebras, α⁻¹=137 symbolic compute-e7-alpha, lie-algebra
Calculus, equations symbolic diff, integrate, solve
Molecular energies numerical quantum-chemistry --method=dft
Quantum circuits numerical quantum-circuit --circuit=bell
PDE solving ml solve-pde --pde-type=heat
Operator learning ml train-fno, train-e3nn
Theorem proving prove lean --statement="..."
Cross-validation verify cross-check --claim="..."
DNA/RNA/protein symbolic bio-sequence, bio-protein, bio-structure
Graph algorithms symbolic graph --operation=shortest_path
Combinatorics symbolic combinatorics --operation=catalan
Discrete optimization symbolic discrete-opt --problem=tsp

Symbolic Mathematics

Lie Algebra Computations

The E7 formula connects exceptional Lie algebras to fundamental physics:

# Compute α⁻¹ from E7 structure
theory --json symbolic compute-e7-alpha --verify

# Query individual properties
theory --json symbolic lie-algebra --type=E7 --query=dimension     # → 133
theory --json symbolic lie-algebra --type=E7 --query=rank          # → 7
theory --json symbolic lie-algebra --type=E7 --query=fundamental_rep  # → 56

Formula: α⁻¹ = dim(E7) + fund_rep/(2×rank) = 133 + 56/14 = 137

Expression Operations

# Evaluate with substitution
theory --json symbolic eval --expr="(x+y)**2" --substitutions='{"x":1,"y":2}'

# Calculus
theory --json symbolic diff --expr="x**3 * sin(x)" --symbol=x
theory --json symbolic integrate --expr="exp(-x**2)" --symbol=x

# Equation solving
theory --json symbolic solve --expr="x**3 - 8" --symbol=x

Numerical Physics

Quantum Chemistry

Methods ranked by accuracy/cost:

  1. HF (Hartree-Fock): Fastest, no correlation
  2. DFT (B3LYP, PBE): Good balance
  3. CCSD: Most accurate, expensive
# Water with DFT
theory --json numerical quantum-chemistry \
  --molecule="H2O" --method=dft --xc=b3lyp --basis=def2-svp

# Custom geometry
theory --json numerical quantum-chemistry \
  --molecule="O 0 0 0; H 0.757 0.587 0; H -0.757 0.587 0" \
  --method=ccsd --basis=cc-pVDZ

Quantum Circuits

# Bell state measurement
theory --json numerical quantum-circuit --circuit=bell --shots=1024

# GHZ statevector
theory --json numerical quantum-circuit --circuit=ghz3 --statevector

Physics Machine Learning

Fourier Neural Operators

For learning PDE solution operators:

# Standard FNO
theory --json ml train-fno --modes=16 --width=64 --layers=4

# Memory-efficient
theory --json ml train-fno --modes=32 --width=128 --factorization=tucker

Tucker factorization reduces memory ~10x for large models.

Physics-Informed Neural Networks

Solve PDEs without training data:

# Heat equation
theory --json ml solve-pde --pde-type=heat --alpha=0.01 --iterations=10000

# Poisson equation
theory --json ml solve-pde --pde-type=poisson --iterations=20000

E3NN Equivariant Networks

For molecular systems respecting 3D symmetry:

theory --json ml train-e3nn --irreps-hidden="32x0e+16x1o+8x2e" --use-gates

Bioinformatics & Molecular Biology

Sequence Analysis

Work with DNA, RNA, and protein sequences using Biopython:

# Transcribe DNA to RNA
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=transcribe

# Translate DNA to protein
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=translate

# Reverse complement
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=reverse_complement

# GC content calculation
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=gc_content

Protein Analysis

# Calculate molecular weight
theory --json symbolic bio-protein --sequence="MKTAYIAKQR" --operation=molecular_weight

# Compute isoelectric point
theory --json symbolic bio-protein --sequence="MKTAYIAKQR" --operation=isoelectric_point

# Predict secondary structure
theory --json symbolic bio-protein --sequence="MKTAYIAKQR" --operation=secondary_structure

Structure Analysis

Load and analyze protein structures from PDB files:

# Parse PDB structure
theory --json symbolic bio-structure --pdb-id="1BNA" --operation=get_info

# Extract sequence from structure
theory --json symbolic bio-structure --pdb-id="1BNA" --operation=extract_sequence

# Calculate RMSD between structures
theory --json symbolic bio-structure --pdb-id="1BNA" --reference="1BNB" --operation=rmsd

Combinatorics & Discrete Mathematics

Graph Theory

Using NetworkX for graph algorithms:

# Create and analyze graph
theory --json symbolic graph --edges="[[0,1],[1,2],[2,0]]" --operation=shortest_path --source=0 --target=2

# Find connected components
theory --json symbolic graph --edges="[[0,1],[2,3]]" --operation=components

# Calculate centrality measures
theory --json symbolic graph --edges="[[0,1],[1,2],[2,0]]" --operation=centrality --method=betweenness

# Check graph properties
theory --json symbolic graph --edges="[[0,1],[1,2],[2,0]]" --operation=is_planar

Enumeration

Compute combinatorial numbers and sequences:

# Catalan numbers
theory --json symbolic combinatorics --operation=catalan --n=10

# Bell numbers (partitions)
theory --json symbolic combinatorics --operation=bell --n=5

# Stirling numbers (first/second kind)
theory --json symbolic combinatorics --operation=stirling --n=5 --k=2 --kind=second

# Partition function
theory --json symbolic combinatorics --operation=partitions --n=10

Optimization Problems

Solve classic discrete optimization problems:

# Traveling salesman problem
theory --json symbolic discrete-opt --problem=tsp --distances="[[0,10,15],[10,0,20],[15,20,0]]"

# Knapsack problem
theory --json symbolic discrete-opt --problem=knapsack \
  --weights="[2,3,4,5]" --values="[3,4,5,6]" --capacity=8

# Vertex cover
theory --json symbolic discrete-opt --problem=vertex_cover \
  --edges="[[0,1],[1,2],[2,3]]"

# Maximum flow
theory --json symbolic discrete-opt --problem=max_flow \
  --edges="[[0,1,10],[1,2,5],[0,2,15]]" --source=0 --sink=2

Theorem Proving

RobustLeanProver (Recommended)

Automatic proof search with intelligent tactic selection:

# Auto mode - tries 14+ tactics with parallel search
theory --json prove lean --statement="2 + 2 = 4"
theory --json prove lean --statement="∀ n : Nat, n + 0 = n"

# Specific tactics
theory --json prove lean --statement="2 + 2 = 4" --tactic=rfl
theory --json prove lean --statement="10 * 10 = 100" --tactic=decide
theory --json prove lean --statement="∀ x, x + 0 = x" --tactic=omega

Tactic Tiers (Auto Mode)

Tier Tactics Speed Mode
fast rfl, trivial, decide ~100ms Parallel
arithmetic norm_num, omega, ring, simp ~500ms Parallel
search simp_all, aesop, tauto ~3s Sequential
combined simp; ring, norm_num; simp ~10s Sequential

Problem Type Detection

Type Example Suggested Tactics
arithmetic 2 + 2 = 4 rfl, decide, norm_num
algebraic (a+b)^2 = ... ring (needs mathlib)
inductive List.length ... induction, cases
logical True, 1 < 2 decide, tauto

Proof Caching

  • Successful proofs cached to ~/.cache/theory2/proofs/
  • Cache hits are instant (no REPL call)
  • Use --no-cache to force re-computation

Searching & Saving Proofs

# Save successful proof
theory --json prove lean --statement="3 + 3 = 6" --save

# Search proofs
theory --json prove search --query="continuous" --search-in=both

# List saved
theory --json prove list --verified-only

Scientific Validation Workflow

Hermeneutic Circle Methodology

Apply iterative refinement:

  1. Part→Whole: Analyze components individually
  2. Whole→Part: Use overall structure to inform details
  3. Iterate: Refine understanding through cycles

Prior Knowledge Integration

Before computing, search for relevant prior work:

mcp__plugin_task-memory_task-memory__search(query="<topic>")

Multi-Method Verification

Always cross-validate critical results:

theory --json verify cross-check \
  --claim="alpha_inv=137" \
  --methods="symbolic,numerical,experimental" \
  --tolerance=0.001

Documentation

Record for reproducibility:

  • Method and parameters used
  • Computational environment
  • Reference values compared against
  • Uncertainty quantification

MCP Tools

The plugin provides MCP tools for direct invocation:

  • theory2_symbolic_compute_e7_alpha
  • theory2_symbolic_lie_algebra
  • theory2_symbolic_eval/simplify/solve/diff/integrate
  • theory2_numerical_quantum_chemistry
  • theory2_numerical_quantum_circuit
  • theory2_ml_train_fno/train_e3nn/solve_pde
  • theory2_prove_lean/search
  • theory2_verify_cross_check

Agents

  • physics-solver: Autonomous multi-step problem solving (physics, ML, bioinformatics)
  • physics-verifier: Cross-validation and verification
  • theorem-prover: Automated Lean 4 theorem proving with RobustLeanProver
  • bio-analyzer: Sequence analysis, protein structure, and molecular biology workflows
  • graph-solver: Graph algorithms and discrete optimization problems

Best Practices

  1. Always verify: Use cross-check for important results
  2. Document provenance: Record methods, parameters, references
  3. Search first: Check task memory for prior relevant work
  4. Iterate: Apply hermeneutic refinement to deepen understanding
  5. Quantify uncertainty: Report tolerances and error bounds