| name | theory2-physics |
| description | Use when performing mathematical physics computations - Lie algebras, quantum chemistry, neural operators, theorem proving, or scientific validation. Provides guidance on Theory2 CLI usage, computational workflows, and verification methodology. |
| version | 1.0.0 |
Theory2 Mathematical Physics Tooling
Master the Theory2 suite for mathematical physics computation.
Quick Reference
All commands use the pattern:
/home/mikeb/theory2/.venv/bin/theory --json <group> <action> [options]
Always use --json for structured, parseable output.
Module Selection Guide
| Task | Module | Key Commands |
|---|---|---|
| Lie algebras, α⁻¹=137 | symbolic | compute-e7-alpha, lie-algebra |
| Calculus, equations | symbolic | diff, integrate, solve |
| Molecular energies | numerical | quantum-chemistry --method=dft |
| Quantum circuits | numerical | quantum-circuit --circuit=bell |
| PDE solving | ml | solve-pde --pde-type=heat |
| Operator learning | ml | train-fno, train-e3nn |
| Theorem proving | prove | lean --statement="..." |
| Cross-validation | verify | cross-check --claim="..." |
| DNA/RNA/protein | symbolic | bio-sequence, bio-protein, bio-structure |
| Graph algorithms | symbolic | graph --operation=shortest_path |
| Combinatorics | symbolic | combinatorics --operation=catalan |
| Discrete optimization | symbolic | discrete-opt --problem=tsp |
Symbolic Mathematics
Lie Algebra Computations
The E7 formula connects exceptional Lie algebras to fundamental physics:
# Compute α⁻¹ from E7 structure
theory --json symbolic compute-e7-alpha --verify
# Query individual properties
theory --json symbolic lie-algebra --type=E7 --query=dimension # → 133
theory --json symbolic lie-algebra --type=E7 --query=rank # → 7
theory --json symbolic lie-algebra --type=E7 --query=fundamental_rep # → 56
Formula: α⁻¹ = dim(E7) + fund_rep/(2×rank) = 133 + 56/14 = 137
Expression Operations
# Evaluate with substitution
theory --json symbolic eval --expr="(x+y)**2" --substitutions='{"x":1,"y":2}'
# Calculus
theory --json symbolic diff --expr="x**3 * sin(x)" --symbol=x
theory --json symbolic integrate --expr="exp(-x**2)" --symbol=x
# Equation solving
theory --json symbolic solve --expr="x**3 - 8" --symbol=x
Numerical Physics
Quantum Chemistry
Methods ranked by accuracy/cost:
- HF (Hartree-Fock): Fastest, no correlation
- DFT (B3LYP, PBE): Good balance
- CCSD: Most accurate, expensive
# Water with DFT
theory --json numerical quantum-chemistry \
--molecule="H2O" --method=dft --xc=b3lyp --basis=def2-svp
# Custom geometry
theory --json numerical quantum-chemistry \
--molecule="O 0 0 0; H 0.757 0.587 0; H -0.757 0.587 0" \
--method=ccsd --basis=cc-pVDZ
Quantum Circuits
# Bell state measurement
theory --json numerical quantum-circuit --circuit=bell --shots=1024
# GHZ statevector
theory --json numerical quantum-circuit --circuit=ghz3 --statevector
Physics Machine Learning
Fourier Neural Operators
For learning PDE solution operators:
# Standard FNO
theory --json ml train-fno --modes=16 --width=64 --layers=4
# Memory-efficient
theory --json ml train-fno --modes=32 --width=128 --factorization=tucker
Tucker factorization reduces memory ~10x for large models.
Physics-Informed Neural Networks
Solve PDEs without training data:
# Heat equation
theory --json ml solve-pde --pde-type=heat --alpha=0.01 --iterations=10000
# Poisson equation
theory --json ml solve-pde --pde-type=poisson --iterations=20000
E3NN Equivariant Networks
For molecular systems respecting 3D symmetry:
theory --json ml train-e3nn --irreps-hidden="32x0e+16x1o+8x2e" --use-gates
Bioinformatics & Molecular Biology
Sequence Analysis
Work with DNA, RNA, and protein sequences using Biopython:
# Transcribe DNA to RNA
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=transcribe
# Translate DNA to protein
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=translate
# Reverse complement
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=reverse_complement
# GC content calculation
theory --json symbolic bio-sequence --sequence="ATGCGTACG" --operation=gc_content
Protein Analysis
# Calculate molecular weight
theory --json symbolic bio-protein --sequence="MKTAYIAKQR" --operation=molecular_weight
# Compute isoelectric point
theory --json symbolic bio-protein --sequence="MKTAYIAKQR" --operation=isoelectric_point
# Predict secondary structure
theory --json symbolic bio-protein --sequence="MKTAYIAKQR" --operation=secondary_structure
Structure Analysis
Load and analyze protein structures from PDB files:
# Parse PDB structure
theory --json symbolic bio-structure --pdb-id="1BNA" --operation=get_info
# Extract sequence from structure
theory --json symbolic bio-structure --pdb-id="1BNA" --operation=extract_sequence
# Calculate RMSD between structures
theory --json symbolic bio-structure --pdb-id="1BNA" --reference="1BNB" --operation=rmsd
Combinatorics & Discrete Mathematics
Graph Theory
Using NetworkX for graph algorithms:
# Create and analyze graph
theory --json symbolic graph --edges="[[0,1],[1,2],[2,0]]" --operation=shortest_path --source=0 --target=2
# Find connected components
theory --json symbolic graph --edges="[[0,1],[2,3]]" --operation=components
# Calculate centrality measures
theory --json symbolic graph --edges="[[0,1],[1,2],[2,0]]" --operation=centrality --method=betweenness
# Check graph properties
theory --json symbolic graph --edges="[[0,1],[1,2],[2,0]]" --operation=is_planar
Enumeration
Compute combinatorial numbers and sequences:
# Catalan numbers
theory --json symbolic combinatorics --operation=catalan --n=10
# Bell numbers (partitions)
theory --json symbolic combinatorics --operation=bell --n=5
# Stirling numbers (first/second kind)
theory --json symbolic combinatorics --operation=stirling --n=5 --k=2 --kind=second
# Partition function
theory --json symbolic combinatorics --operation=partitions --n=10
Optimization Problems
Solve classic discrete optimization problems:
# Traveling salesman problem
theory --json symbolic discrete-opt --problem=tsp --distances="[[0,10,15],[10,0,20],[15,20,0]]"
# Knapsack problem
theory --json symbolic discrete-opt --problem=knapsack \
--weights="[2,3,4,5]" --values="[3,4,5,6]" --capacity=8
# Vertex cover
theory --json symbolic discrete-opt --problem=vertex_cover \
--edges="[[0,1],[1,2],[2,3]]"
# Maximum flow
theory --json symbolic discrete-opt --problem=max_flow \
--edges="[[0,1,10],[1,2,5],[0,2,15]]" --source=0 --sink=2
Theorem Proving
RobustLeanProver (Recommended)
Automatic proof search with intelligent tactic selection:
# Auto mode - tries 14+ tactics with parallel search
theory --json prove lean --statement="2 + 2 = 4"
theory --json prove lean --statement="∀ n : Nat, n + 0 = n"
# Specific tactics
theory --json prove lean --statement="2 + 2 = 4" --tactic=rfl
theory --json prove lean --statement="10 * 10 = 100" --tactic=decide
theory --json prove lean --statement="∀ x, x + 0 = x" --tactic=omega
Tactic Tiers (Auto Mode)
| Tier | Tactics | Speed | Mode |
|---|---|---|---|
| fast | rfl, trivial, decide | ~100ms | Parallel |
| arithmetic | norm_num, omega, ring, simp | ~500ms | Parallel |
| search | simp_all, aesop, tauto | ~3s | Sequential |
| combined | simp; ring, norm_num; simp | ~10s | Sequential |
Problem Type Detection
| Type | Example | Suggested Tactics |
|---|---|---|
| arithmetic | 2 + 2 = 4 |
rfl, decide, norm_num |
| algebraic | (a+b)^2 = ... |
ring (needs mathlib) |
| inductive | List.length ... |
induction, cases |
| logical | True, 1 < 2 |
decide, tauto |
Proof Caching
- Successful proofs cached to
~/.cache/theory2/proofs/ - Cache hits are instant (no REPL call)
- Use
--no-cacheto force re-computation
Searching & Saving Proofs
# Save successful proof
theory --json prove lean --statement="3 + 3 = 6" --save
# Search proofs
theory --json prove search --query="continuous" --search-in=both
# List saved
theory --json prove list --verified-only
Scientific Validation Workflow
Hermeneutic Circle Methodology
Apply iterative refinement:
- Part→Whole: Analyze components individually
- Whole→Part: Use overall structure to inform details
- Iterate: Refine understanding through cycles
Prior Knowledge Integration
Before computing, search for relevant prior work:
mcp__plugin_task-memory_task-memory__search(query="<topic>")
Multi-Method Verification
Always cross-validate critical results:
theory --json verify cross-check \
--claim="alpha_inv=137" \
--methods="symbolic,numerical,experimental" \
--tolerance=0.001
Documentation
Record for reproducibility:
- Method and parameters used
- Computational environment
- Reference values compared against
- Uncertainty quantification
MCP Tools
The plugin provides MCP tools for direct invocation:
theory2_symbolic_compute_e7_alphatheory2_symbolic_lie_algebratheory2_symbolic_eval/simplify/solve/diff/integratetheory2_numerical_quantum_chemistrytheory2_numerical_quantum_circuittheory2_ml_train_fno/train_e3nn/solve_pdetheory2_prove_lean/searchtheory2_verify_cross_check
Agents
- physics-solver: Autonomous multi-step problem solving (physics, ML, bioinformatics)
- physics-verifier: Cross-validation and verification
- theorem-prover: Automated Lean 4 theorem proving with RobustLeanProver
- bio-analyzer: Sequence analysis, protein structure, and molecular biology workflows
- graph-solver: Graph algorithms and discrete optimization problems
Best Practices
- Always verify: Use cross-check for important results
- Document provenance: Record methods, parameters, references
- Search first: Check task memory for prior relevant work
- Iterate: Apply hermeneutic refinement to deepen understanding
- Quantify uncertainty: Report tolerances and error bounds