Claude Code Plugins

Community-maintained marketplace

Feedback

This skill should be used when the user asks for "MCP examples", "real-world patterns", "code search patterns", "browser proxy patterns", "process management patterns", "show me examples", or wants to see actual implementations from lci, agnt, or other real MCPs.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name MCP Examples
description This skill should be used when the user asks for "MCP examples", "real-world patterns", "code search patterns", "browser proxy patterns", "process management patterns", "show me examples", or wants to see actual implementations from lci, agnt, or other real MCPs.
version 0.1.0

MCP Examples

Purpose

Provide real-world MCP patterns from production servers: code search (lci), browser integration (agnt), process management, and knowledge bases.

When to Use

  • Need concrete examples of patterns
  • Want to see actual implementations
  • Designing similar functionality
  • Learning from working systems

Code Search Pattern (lci)

Architecture

  • Pattern: Hub-and-Spoke + Progressive Discovery
  • Tools: 8+ tools
  • Token System: result_id, symbol_id

Key Tools

search - Hub tool

{
  "input": {"pattern": "string", "filter": "optional"},
  "output": {
    "results": [
      {"id": "r1", "name": "User.authenticate", "preview": "...", "conf": 0.95}
    ],
    "has_more": true,
    "total": 127
  }
}

get_definition - Spoke tool

{
  "input": {"id": "r1"},
  "output": {
    "symbol_id": "s1",
    "name": "User.authenticate",
    "signature": "...",
    "source": "...",
    "location": {"file": "user.ts", "line": 42}
  }
}

Token efficiency: ID reference saves ~80% tokens vs. repeating full code

Progressive Detail Example

Query: "authenticate"

High match (0.95): Full details (200 tokens)
  - Name, signature, docs, preview, location

Medium match (0.70): Summary (50 tokens)
  - Name, type, file

Low match (0.40): Minimal (10 tokens)
  - Name, ID only

Browser Proxy Pattern (agnt)

Architecture

  • Pattern: CRUD + Aggregation
  • Tools: 10+ tools
  • Token Systems: proxy_id, session_id, request_id

Key Tools

proxy_start - Create

{
  "input": {"target_url": "http://localhost:3000"},
  "output": {
    "proxy_id": "dev",
    "listen_addr": "http://localhost:12345",
    "status": "running"
  }
}

currentpage - Aggregation

{
  "input": {"proxy_id": "dev"},
  "output": {
    "session_id": "page-1",
    "url": "http://localhost:3000",
    "errors_count": 3,          // Not full error objects
    "interactions_count": 127,   // Not every interaction
    "mutations_count": 45,       // Not every mutation
    "performance": {...}
  },
  "detail_access": "Use detail=['errors'] for full data"
}

Key pattern: Counts in overview, full data on request

Hierarchical IDs

proxy_id (dev)
  ↓
session_id (page-1)
  ↓
request_id (req_a1b2)

Each level provides more specificity.

Process Management Pattern

Architecture

  • Pattern: CRUD + Lazy Loading
  • Tools: 8+ tools
  • Token System: process_id

Progressive Status

Level 1 - Count

{
  "active": 5,
  "stopped": 2
}

Level 2 - List

{
  "processes": [
    {"id": "p1", "name": "dev-server", "status": "running"},
    {"id": "p2", "name": "test", "status": "running"}
  ]
}

Level 3 - Status

{
  "id": "p1",
  "status": "running",
  "uptime": "2h15m",
  "memory": "245MB",
  "preview": "Server listening :3000"
}

Level 4 - Full

{
  /* ...all Level 3... */,
  "full_output": "... complete logs ...",
  "env": {...},
  "metrics": {...}
}

Knowledge Base Pattern

Architecture

  • Pattern: Discovery-Detail
  • Tools: Search, topics, articles
  • Token System: article_id, topic_id

Layered Access

list_topics()
  → ["auth", "deploy", "monitor"]

get_topic_summary("auth")
  → {articles: 12, updated: "2024-01"}

search_articles("OAuth")
  → [{id: "a1", title: "...", preview: "..."}]

get_article("a1")
  → {title, content, related: [...]}

Common Patterns Across Examples

1. ID Reference System

All use IDs to avoid repeating data:

  • lci: result_id → symbol_id
  • agnt: proxy_id → session_id → request_id
  • process: process_id
  • kb: topic_id → article_id

Savings: 70-90% token reduction

2. Progressive Detail

All vary detail by context:

  • lci: By confidence (0.95 = full, 0.40 = minimal)
  • agnt: By request (counts vs. full arrays)
  • process: By depth (count → list → status → full)
  • kb: By layer (topics → summary → full article)

3. Automation Flags

All include standard flags:

{
  "has_more": boolean,
  "total": integer,
  "returned": integer,
  "complete": boolean
}

4. Accept Extra Parameters

All accept unknown params with warnings:

const {known, params, ...extra} = input
if (extra) warnings.push(`Unknown: ${Object.keys(extra)}`)

Anti-Patterns Seen and Fixed

❌ Repeating Data

Before (wasteful):

// Tool 1
{"results": [{"name": "...", "code": "... 200 lines ..."}]}

// Tool 2 needs same data
// User copies entire result

After (efficient):

// Tool 1
{"results": [{"id": "r1", "name": "...", "preview": "10 lines"}]}

// Tool 2
input: {"id": "r1"}  // Reference only

❌ No Progressive Detail

Before:

{
  "results": [
    {"name": "...", "full": "... 500 tokens ..."},
    {"name": "...", "full": "... 500 tokens ..."},
    {"name": "...", "full": "... 500 tokens ..."}
  ]
}

After:

{
  "results": [
    {"id": "a1", "conf": 0.95, "full": "..."},  // Only high confidence
    {"id": "b2", "conf": 0.70, "summary": "..."},
    {"id": "c3", "conf": 0.40}  // Just ID
  ]
}

❌ Flat Structure

Before (15+ tools, no organization):

search_users, search_posts, get_user, get_post, ...

After (grouped):

Query Tools: search
Lookup Tools: get_user, get_post
Management: create_user, update_user

Real-World Token Savings

lci code_search Tool

Without IDs:

  • Average result: 250 tokens (full code)
  • 10 results: 2,500 tokens

With IDs:

  • Average preview: 50 tokens
  • 10 results: 500 tokens
  • Savings: 80%

agnt currentpage Tool

Without aggregation:

  • Full errors array: 400 tokens
  • Full interactions: 600 tokens
  • Full mutations: 300 tokens
  • Total: 1,300 tokens

With aggregation:

  • Error count: 10 tokens
  • Interaction count: 10 tokens
  • Mutation count: 10 tokens
  • Total: 30 tokens (97% savings)
  • Use detail parameter for full arrays when needed

Additional Resources

Examples Directory

  • examples/lci-workflow.json - Complete lci search workflow
  • examples/agnt-workflow.json - Browser debugging workflow
  • examples/process-workflow.json - Process management workflow

Quick Reference

Proven patterns:

  1. Hub-and-Spoke - lci (search → details)
  2. CRUD - agnt (lifecycle management)
  3. Aggregation - agnt currentpage (counts not arrays)
  4. Lazy Loading - process status (overview → full)
  5. Discovery-Detail - kb (topics → articles)

Key lessons:

  • IDs save 70-90% tokens
  • Progressive detail by relevance/confidence
  • Counts in overview, arrays on request
  • Accept extra params with warnings
  • Automation flags for AI agents

Study these real-world examples when designing similar functionality.