| name | hosted-mcp-server |
| description | Creates and configures hosted Model Context Protocol (MCP) server connections for OpenAI Agents SDK |
Hosted MCP Server Skill
This skill helps create and configure hosted Model Context Protocol (MCP) server connections for OpenAI Agents SDK.
Purpose
- Create HostedMCPTool configurations
- Configure server parameters and authentication
- Set up approval flows for sensitive operations
- Connect to publicly accessible MCP servers
HostedMCPTool Properties
- tool_config (Mcp object/dict): The MCP tool config, which includes the server URL and other settings
- on_approval_request (function): An optional function that will be called if approval is requested for an MCP tool. The function takes an MCPToolApprovalRequest object as input and returns a dictionary with:
- approve (bool): Whether to approve the tool call
- reason (string, optional): An optional reason, if rejected
- The function can be synchronous or asynchronous (return type can be awaitable)
Mcp Object Properties (for tool_config)
- type (string, required): The type of the MCP tool. Always "mcp"
- server_label (string, required): A label for this MCP server, used to identify it in tool calls
- server_url (string): The URL for the MCP server (one of server_url or connector_id must be provided)
- server_description (string): Optional description of the MCP server, used to provide more context
- connector_id (string): Identifier for service connectors (one of server_url or connector_id must be provided)
- authorization (string): OAuth access token that can be used with a remote MCP server
- headers (dict): Optional HTTP headers to send to the MCP server (for authentication or other purposes)
- allowed_tools (McpAllowedTools): List of allowed tool names or a filter object
- require_approval (McpRequireApproval): Specify which of the MCP server's tools require approval
MCPToolApprovalRequest Properties
- ctx_wrapper (RunContextWrapper): The run context
- data (McpApprovalRequest): The data from the MCP tool approval request
Connector IDs Supported
- connector_dropbox
- connector_gmail
- connector_googlecalendar
- connector_googledrive
- connector_microsoftteams
- connector_outlookcalendar
- connector_outlookemail
- connector_sharepoint
Approval Options
- "always": Always require approval
- "never": Never require approval
- Object mapping: Specific approval policies per tool
Usage Context
Use this skill when:
- Connecting to publicly accessible MCP servers
- Using OpenAI's infrastructure for tool execution
- Working with service connectors
- Needing hosted tool execution without local callbacks
Basic Example
import asyncio
from agents import Agent, HostedMCPTool, Runner
async def main() -> None:
agent = Agent(
name="Assistant",
tools=[
HostedMCPTool(
tool_config={
"type": "mcp",
"server_label": "gitmcp",
"server_url": "https://gitmcp.io/openai/codex",
"require_approval": "never",
}
)
],
)
result = await Runner.run(agent, "Which language is this repository written in?")
print(result.final_output)
asyncio.run(main())
Streaming Example
result = Runner.run_streamed(agent, "Summarise this repository's top languages")
async for event in result.stream_events():
if event.type == "run_item_stream_event":
print(f"Received: {event.item}")
print(result.final_output)
Approval Flow Example
Use when servers can perform sensitive operations that require human or programmatic approval before execution. Configure require_approval with policies ("always", "never") or a dict mapping tool names to policies.
from agents import Agent, HostedMCPTool, MCPToolApprovalFunctionResult, MCPToolApprovalRequest
SAFE_TOOLS = {"read_project_metadata"}
def approve_tool(request: MCPToolApprovalRequest) -> MCPToolApprovalFunctionResult:
if request.data.name in SAFE_TOOLS:
return {"approve": True}
return {"approve": False, "reason": "Escalate to a human reviewer"}
agent = Agent(
name="Assistant",
tools=[
HostedMCPTool(
tool_config={
"type": "mcp",
"server_label": "gitmcp",
"server_url": "https://gitmcp.io/openai/codex",
"require_approval": "always",
},
on_approval_request=approve_tool,
)
],
)
Connector-Backed Example
Use for OpenAI connectors instead of specifying a server_url. The Responses API handles authentication and exposes the connector's tools.
import os
HostedMCPTool(
tool_config={
"type": "mcp",
"server_label": "google_calendar",
"connector_id": "connector_googlecalendar",
"authorization": os.environ["GOOGLE_CALENDAR_AUTHORIZATION"],
"require_approval": "never",
}
)