| name | technical-trends-discovery |
| description | Discover what's trending in AI/tech by scanning thought leaders on X, then deep-researching the #1 trend with structured output (docs URLs, package versions, key concepts). Use when you want to stay current on AI engineering trends without manual research. |
Technical Trends Discovery
X/Twitter is where thought leaders share real-time opinions and insights. The xAI API excels at searching and analyzing X posts to identify what's actually important right now. Once we identify THE trend, Tavily Research extracts structured metadata including latest package versions, key concepts, documentation URLs, and insights.
Two-step automated pipeline for discovering and deeply researching the most important AI/tech trend:
- X Search (xAI API) → Find what thought leaders are discussing, identify #1 trend
- Deep Research (Tavily API) → Comprehensive research on the topic
Quick Start
# Run full pipeline: X → Research → Structured JSON
python .claude/skills/technical-trends-discovery/scripts/discover_trends.py
# X discovery only (skip Tavily research)
python .claude/skills/technical-trends-discovery/scripts/discover_trends.py --x-only
# Custom handles and date range
python .claude/skills/technical-trends-discovery/scripts/discover_trends.py \
--handles karpathy simonw swyx \
--days 7
Output Format
Results are saved to trends-reports/ at the repo root as a single consolidated JSON file:
trends-reports/
└── trends_2025-01-06_143022/
└── report.json # All results in one file
report.json Structure
{
"meta": {
"generated_at": "2025-01-06T14:30:22.123456",
"pipeline": "x_discovery → tavily_research",
"sources_count": 15
},
"x_discovery": {
"content": "# X Trends Analysis\n\nThe #1 trend identified...",
"citations": ["https://x.com/..."]
},
"research": {
"trend": {
"name": "Model Context Protocol",
"summary": "An open standard for sharing context between AI tools...",
"why_important": "MCP is emerging as the standard...",
"docs_url": "https://modelcontextprotocol.io",
"github_repo": "https://github.com/modelcontextprotocol",
"quickstart": {
"prerequisites": ["Python 3.10+"],
"install_commands": "pip install mcp==1.25.0",
"hello_world_code": "from mcp import Client...",
"expected_output": "Connected to MCP server"
},
"use_cases": [...],
"common_pitfalls": [...],
"key_packages": [
{"name": "mcp", "latest_version": "1.25.0", "package_manager": "pip"}
],
"key_concepts": ["Resources", "Tools", "Prompts"],
"additional_resources": [...]
},
"meta": {"research_date": "2025-01-06"}
},
"sources": [
{"url": "https://...", "title": "MCP Documentation"}
]
}
Default Thought Leaders
| Handle | Person |
|---|---|
| hwchase17 | Harrison Chase (LangChain) |
| rlancemartin | Lance Martin (LangChain) |
| simonw | Simon Willison |
| karpathy | Andrej Karpathy |
| cherny | Boris Cherny |
| swyx | Swyx |
| alexalbert__ | Alex Albert (Anthropic) |
CLI Options
| Option | Default | Description |
|---|---|---|
--handles, -H |
7 AI leaders | X handles to search |
--days, -d |
20 | Days back to search |
Environment Variables
export XAI_API_KEY="your-xai-key" # Required for X search
export TAVILY_API_KEY="your-tavily-key" # Required for research
Python Usage
from discover_trends import discover_trends
# Run full pipeline
results = discover_trends(
handles=["karpathy", "simonw", "swyx"],
days_back=14,
)
# Access results
print(results["x_trends"]["content"]) # X discovery markdown
print(results["research"]["content"]) # Structured JSON with trend data
print(results["output_dir"]) # Where files were saved
Categories
Trends are automatically categorized as:
agent_engineering- Building/deploying LLM agents, frameworks, orchestrationcontext_engineering- RAG, memory, context management, MCPai_programming- Code generation, AI-assisted developmentother- Everything else