Claude Code Plugins

Community-maintained marketplace

Feedback

ARIMA parameter estimation for seasonal and non-seasonal AR, MA, ARMA, and ARIMA models

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name td-arimaestimate
description ARIMA parameter estimation for seasonal and non-seasonal AR, MA, ARMA, and ARIMA models

Teradata ARIMA Parameter Estimation

Skill Name Teradata ARIMA Parameter Estimation
Description ARIMA parameter estimation for seasonal and non-seasonal AR, MA, ARMA, and ARIMA models
Category Uaf Time Series
Function TD_ARIMAESTIMATE
Framework Teradata Unbounded Array Framework (UAF)

Core Capabilities

  • Advanced UAF implementation with optimized array processing
  • Scalable time series analysis for millions of products or billions of IoT sensors
  • High-dimensional data support for complex analytical use cases
  • Production-ready SQL generation with proper UAF syntax
  • Comprehensive error handling and data validation
  • Business-focused interpretation of analytical results
  • Integration with UAF pipeline workflows

Unbounded Array Framework (UAF) Overview

The Unbounded Array Framework is Teradata's analytics framework for:

  • End-to-end time series forecasting pipelines
  • Digital signal processing for radar, sonar, audio, and video
  • 4D spatial analytics and image processing
  • Scalable analysis of high-dimensional data
  • Complex use cases across multiple industries

UAF functions process:

  • One-dimensional series indexed by time or space
  • Two-dimensional arrays (matrices) indexed by time, space, or both
  • Large datasets with robust scalability

Table Analysis Workflow

This skill automatically analyzes your time series data to generate optimized UAF workflows:

1. Time Series Structure Analysis

  • Temporal Column Detection: Identifies time/date columns for indexing
  • Value Column Classification: Distinguishes between numeric time series values
  • Frequency Analysis: Determines sampling frequency and intervals
  • Seasonality Detection: Identifies seasonal patterns and cycles

2. UAF-Specific Recommendations

  • Array Dimension Setup: Configures proper 1D/2D array structures
  • Time Indexing: Sets up appropriate temporal indexing
  • Parameter Optimization: Suggests optimal parameters for TD_ARIMAESTIMATE
  • Pipeline Integration: Recommends complementary UAF functions

3. SQL Generation Process

  • UAF Syntax Generation: Creates proper Unbounded Array Framework SQL
  • Array Processing: Handles time series arrays and matrices
  • Parameter Configuration: Sets function-specific parameters
  • Pipeline Workflows: Generates complete analytical pipelines

How to Use This Skill

  1. Provide Your Time Series Data:

    "Analyze time series table: database.sensor_data with timestamp column and value columns"
    
  2. The Skill Will:

    • Analyze temporal structure and sampling frequency
    • Identify optimal UAF function parameters
    • Generate complete TD_ARIMAESTIMATE workflow
    • Provide performance optimization recommendations

Input Requirements

Data Requirements

  • Time series table: Teradata table with temporal data
  • Timestamp column: Time/date column for temporal indexing
  • Value columns: Numeric columns for analysis
  • Regular sampling: Consistent time intervals (recommended)
  • Sufficient history: Adequate data points for reliable analysis

Technical Requirements

  • Teradata Vantage with UAF (Unbounded Array Framework) enabled
  • UAF License: Access to time series and signal processing functions
  • Database permissions: CREATE, DROP, SELECT on working database
  • Function access: TD_ARIMAESTIMATE, TD_ARIMAFORECAST

Output Formats

Generated Results

  • UAF-processed arrays with temporal/spatial indexing
  • Analysis results specific to TD_ARIMAESTIMATE functionality
  • Model parameters and estimation results
  • Forecast outputs with confidence intervals

SQL Scripts

  • Complete UAF workflows ready for execution
  • Parameterized queries optimized for your data structure
  • Array processing with proper UAF syntax

Uaf Time Series Use Cases Supported

  1. ARIMA parameter estimation: Advanced UAF-based analysis
  2. Seasonal model fitting: Advanced UAF-based analysis
  3. Box-Jenkins methodology: Advanced UAF-based analysis
  4. Time series modeling: Advanced UAF-based analysis

Key Parameters for TD_ARIMAESTIMATE

  • P: Function-specific parameter for optimal results
  • D: Function-specific parameter for optimal results
  • Q: Function-specific parameter for optimal results
  • SeasonalP: Function-specific parameter for optimal results
  • SeasonalD: Function-specific parameter for optimal results
  • SeasonalQ: Function-specific parameter for optimal results
  • SeasonalPeriod: Function-specific parameter for optimal results

UAF Best Practices Applied

  • Array dimension optimization for performance
  • Temporal indexing with proper time series structure
  • Parameter tuning specific to TD_ARIMAESTIMATE
  • Memory management for large-scale data processing
  • Error handling for UAF-specific scenarios
  • Pipeline integration with other UAF functions
  • Scalability considerations for production workloads

Example Usage

-- Example TD_ARIMAESTIMATE workflow
-- Replace parameters with your specific requirements

-- 1. Data preparation for UAF processing
SELECT * FROM TD_UNPIVOT (
    ON your_database.your_timeseries_table
    USING
    TimeColumn ('timestamp_col')
    ValueColumns ('value1', 'value2', 'value3')
) AS dt;

-- 2. Execute TD_ARIMAESTIMATE
SELECT * FROM TD_ARIMAESTIMATE (
    ON prepared_data
    USING
    -- Function-specific parameters
    -- (Detailed parameters provided by skill analysis)
) AS dt;

Scripts Included

Core UAF Scripts

  • uaf_data_preparation.sql: UAF-specific data preparation
  • td_arimaestimate_workflow.sql: Complete TD_ARIMAESTIMATE implementation
  • table_analysis.sql: Time series structure analysis
  • parameter_optimization.sql: Function parameter tuning

Integration Scripts

  • uaf_pipeline_template.sql: Multi-function UAF workflows
  • performance_monitoring.sql: UAF execution monitoring
  • result_interpretation.sql: Output analysis and visualization

Industry Applications

Supported Domains

  • Economic forecasting and financial analysis
  • Sales forecasting and demand planning
  • Medical diagnostic image analysis
  • Genomics and biomedical research
  • Radar and sonar analysis
  • Audio and video processing
  • Process monitoring and quality control
  • IoT sensor data analysis

Limitations and Considerations

  • UAF licensing: Requires proper Teradata UAF licensing
  • Memory requirements: Large arrays may require memory optimization
  • Computational complexity: Some operations may be resource-intensive
  • Data quality: Results depend on clean, well-structured time series data
  • Parameter sensitivity: Function performance depends on proper parameter tuning
  • Temporal consistency: Irregular sampling may require preprocessing

Quality Checks

Automated Validations

  • Time series structure verification
  • Array dimension compatibility checks
  • Parameter validation for TD_ARIMAESTIMATE
  • Memory usage monitoring
  • Result quality assessment

Manual Review Points

  • Parameter selection appropriateness
  • Result interpretation accuracy
  • Performance optimization opportunities
  • Integration with existing workflows

Updates and Maintenance

  • UAF compatibility: Tested with latest Teradata UAF releases
  • Performance optimization: Regular UAF-specific optimizations
  • Best practices: Updated with UAF community recommendations
  • Documentation: Maintained with latest UAF features
  • Examples: Real-world UAF use cases and scenarios

This skill provides production-ready uaf time series analytics using Teradata's Unbounded Array Framework TD_ARIMAESTIMATE with industry best practices for scalable time series and signal processing.