| name | doppler-workflows |
| description | Manages credentials and publishing workflows via Doppler. Use when publishing Python packages to PyPI, rotating AWS credentials, or managing secrets with Doppler. |
| allowed-tools | Read, Bash |
Doppler Credential Workflows
Quick Reference
When to use this skill:
- Publishing Python packages to PyPI
- Rotating AWS access keys
- Managing credentials across multiple services
- Troubleshooting authentication failures (403, InvalidClientTokenId)
- Setting up Doppler credential injection patterns
- Multi-token/multi-account strategies
Core Pattern: Doppler CLI
Standard Usage:
doppler run --project <project> --config <config> --command='<command>'
Why --command flag:
- Official Doppler pattern (auto-detects shell)
- Ensures variables expand AFTER Doppler injects them
- Without it: shell expands
$VARbefore Doppler runs → empty string
Quick Start Examples
PyPI Publishing
doppler run --project claude-config --config dev \
--command='uv publish --token "$PYPI_TOKEN"'
AWS Operations
doppler run --project aws-credentials --config dev \
--command='aws s3 ls --region $AWS_DEFAULT_REGION'
Best Practices
- Always use --command flag for credential injection
- Use project-scoped tokens (PyPI) for better security
- Rotate credentials regularly (90 days recommended)
- Document with Doppler notes:
doppler secrets notes set <SECRET> "<note>" - Use stdin for storing secrets:
echo -n 'secret' | doppler secrets set - Test injection before using:
echo ${#VAR}to verify length - Multi-token naming:
SERVICE_TOKEN_{ABBREV}for clarity
Reference Documentation
For detailed information, see:
- PyPI Publishing - Token setup, publishing, troubleshooting
- AWS Credentials - Rotation workflow, setup, troubleshooting
- Multi-Service Patterns - Multiple PyPI packages, multiple AWS accounts
- AWS Workflow - Complete AWS credential management guide
Bundled Specifications:
PYPI_REFERENCE.yaml- Complete PyPI specAWS_SPECIFICATION.yaml- AWS credential architecture
Using mise [env] for Local Development (Recommended)
For local development, mise [env] provides a simpler alternative to doppler run:
# .mise.toml
[env]
# Fetch from Doppler with caching for performance
PYPI_TOKEN = "{{ cache(key='pypi_token', duration='1h', run='doppler secrets get PYPI_TOKEN --project claude-config --config prd --plain') }}"
# For GitHub multi-account setups
GH_TOKEN = "{{ read_file(path=env.HOME ~ '/.claude/.secrets/gh-token-accountname') | trim }}"
When to use mise [env]:
- Per-directory credential configuration
- Multi-account GitHub setups
- Credentials that persist across commands (not session-scoped)
When to use doppler run:
- CI/CD pipelines
- Single-command credential scope
- When you want credentials auto-cleared after command
See `mise-configuration` skill for complete patterns.
PyPI Publishing Policy
For PyPI publishing, see `pypi-doppler` skill for LOCAL-ONLY workspace policy.
Do NOT configure PyPI publishing in GitHub Actions or CI/CD pipelines.