| name | impl-standards |
| description | Core engineering standards during implementation. Use when implementing features, writing production code, or when user mentions error handling, constants management, progress logging, or code quality standards. |
Implementation Standards
Apply these standards during implementation to ensure consistent, maintainable code.
When to Use This Skill
- During
/itp:goPhase 1 - When writing new production code
- User mentions "error handling", "constants", "magic numbers", "progress logging"
- Before release to verify code quality
Quick Reference
| Standard | Rule |
|---|---|
| Errors | Raise + propagate; no fallback/default/retry/silent |
| Constants | Abstract magic numbers into semantic, version-agnostic dynamic constants |
| Dependencies | Prefer OSS libs over custom code; no backward-compatibility needed |
| Progress | Operations >1min: log status every 15-60s |
| Logs | logs/{adr-id}-YYYYMMDD_HHMMSS.log (nohup) |
| Metadata | Optional: catalog-info.yaml for service discovery |
Error Handling
Core Rule: Raise + propagate; no fallback/default/retry/silent
# ✅ Correct - raise with context
def fetch_data(url: str) -> dict:
response = requests.get(url)
if response.status_code != 200:
raise APIError(f"Failed to fetch {url}: {response.status_code}")
return response.json()
# ❌ Wrong - silent catch
try:
result = fetch_data()
except Exception:
pass # Error hidden
See Error Handling Reference for detailed patterns.
Constants Management
Core Rule: Abstract magic numbers into semantic constants
# ✅ Correct - named constant
DEFAULT_API_TIMEOUT_SECONDS = 30
response = requests.get(url, timeout=DEFAULT_API_TIMEOUT_SECONDS)
# ❌ Wrong - magic number
response = requests.get(url, timeout=30)
See Constants Management Reference for patterns.
Progress Logging
For operations taking more than 1 minute, log status every 15-60 seconds:
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
def long_operation(items: list) -> None:
total = len(items)
last_log = datetime.now()
for i, item in enumerate(items):
process(item)
# Log every 30 seconds
if (datetime.now() - last_log).seconds >= 30:
logger.info(f"Progress: {i+1}/{total} ({100*(i+1)//total}%)")
last_log = datetime.now()
logger.info(f"Completed: {total} items processed")
Log File Convention
Save logs to: logs/{adr-id}-YYYYMMDD_HHMMSS.log
# Running with nohup
nohup python script.py > logs/2025-12-01-my-feature-20251201_143022.log 2>&1 &
Related Skills
| Skill | Purpose |
|---|---|
| `adr-code-traceability` | Add ADR references to code |
| `code-hardcode-audit` | Detect hardcoded values before release |
| `semantic-release` | Version management and release automation |
Reference Documentation
- Error Handling - Raise + propagate patterns
- Constants Management - Magic number abstraction