Claude Code Plugins

Community-maintained marketplace

Feedback
2
0

>

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mlflow-python
description Log experiment metrics, parameters, and artifacts using MLflow Python API. Query and analyze runs with DataFrame operations. Use when user mentions "log backtest", "MLflow metrics", "experiment tracking", "log parameters", "search runs", "MLflow query", or needs to record strategy performance.
allowed-tools Read, Bash, Grep, Glob

MLflow Python Skill

Unified read/write MLflow operations via Python API with QuantStats integration for comprehensive trading metrics.

ADR: 2025-12-12-mlflow-python-skill

When to Use This Skill

CAN Do:

  • Log backtest metrics (Sharpe, max_drawdown, total_return, etc.)
  • Log experiment parameters (strategy config, timeframes)
  • Create and manage experiments
  • Query runs with SQL-like filtering
  • Calculate 70+ trading metrics via QuantStats
  • Retrieve metric history (time-series data)

CANNOT Do:

  • Direct database access to MLflow backend
  • Artifact storage management (S3/GCS configuration)
  • MLflow server administration

Prerequisites

Authentication Setup

MLflow uses separate environment variables for credentials (NOT embedded in URI):

# Option 1: mise + .env.local (recommended)
# Create .env.local in skill directory with:
MLFLOW_TRACKING_URI=http://mlflow.eonlabs.com:5000
MLFLOW_TRACKING_USERNAME=eonlabs
MLFLOW_TRACKING_PASSWORD=<password>

# Option 2: Direct environment variables
export MLFLOW_TRACKING_URI="http://mlflow.eonlabs.com:5000"
export MLFLOW_TRACKING_USERNAME="eonlabs"
export MLFLOW_TRACKING_PASSWORD="<password>"

Verify Connection

/usr/bin/env bash << 'SKILL_SCRIPT_EOF'
cd ${CLAUDE_PLUGIN_ROOT}/skills/mlflow-python
uv run scripts/query_experiments.py experiments
SKILL_SCRIPT_EOF

Quick Start Workflows

A. Log Backtest Results (Primary Use Case)

/usr/bin/env bash << 'SKILL_SCRIPT_EOF_2'
cd ${CLAUDE_PLUGIN_ROOT}/skills/mlflow-python
uv run scripts/log_backtest.py \
  --experiment "crypto-backtests" \
  --run-name "btc_momentum_v2" \
  --returns path/to/returns.csv \
  --params '{"strategy": "momentum", "timeframe": "1h"}'
SKILL_SCRIPT_EOF_2

B. Search Experiments

uv run scripts/query_experiments.py experiments

C. Query Runs with Filter

uv run scripts/query_experiments.py runs \
  --experiment "crypto-backtests" \
  --filter "metrics.sharpe_ratio > 1.5" \
  --order-by "metrics.sharpe_ratio DESC"

D. Create New Experiment

uv run scripts/create_experiment.py \
  --name "crypto-backtests-2025" \
  --description "Q1 2025 cryptocurrency trading strategy backtests"

E. Get Metric History

uv run scripts/get_metric_history.py \
  --run-id abc123 \
  --metrics sharpe_ratio,cumulative_return

QuantStats Metrics Available

The log_backtest.py script calculates 70+ metrics via QuantStats, including:

Category Metrics
Ratios sharpe, sortino, calmar, omega, treynor
Returns cagr, total_return, avg_return, best, worst
Drawdown max_drawdown, avg_drawdown, drawdown_days
Trade win_rate, profit_factor, payoff_ratio, consecutive_wins/losses
Risk volatility, var, cvar, ulcer_index, serenity_index
Advanced kelly_criterion, recovery_factor, risk_of_ruin, information_ratio

See quantstats-metrics.md for full list.

Bundled Scripts

Script Purpose
log_backtest.py Log backtest returns with QuantStats metrics
query_experiments.py Search experiments and runs (replaces CLI)
create_experiment.py Create new experiment with metadata
get_metric_history.py Retrieve metric time-series data

Configuration

The skill uses mise [env] pattern for configuration. See .mise.toml for defaults.

Create .env.local (gitignored) for credentials:

MLFLOW_TRACKING_URI=http://mlflow.eonlabs.com:5000
MLFLOW_TRACKING_USERNAME=eonlabs
MLFLOW_TRACKING_PASSWORD=<password>

Reference Documentation

Migration from mlflow-query

This skill replaces the CLI-based mlflow-query skill. Key differences:

Feature mlflow-query (old) mlflow-python (new)
Log metrics Not supported mlflow.log_metrics()
Log params Not supported mlflow.log_params()
Query runs CLI text parsing DataFrame output
Metric history Workaround only Native support
Auth pattern Embedded in URI Separate env vars

See migration-from-cli.md for detailed mapping.