| name | multi-agent-e2e-validation |
| description | Multi-agent parallel E2E validation workflow for database refactors and system migrations. Use when validating QuestDB deployments, schema migrations, bulk data ingestion pipelines, or any database-centric refactor requiring comprehensive testing across environment, data flow, and query layers. |
Multi-Agent E2E Validation
Overview
Prescriptive workflow for spawning parallel validation agents to comprehensively test database refactors. Successfully identified 5 critical bugs (100% system failure rate) in QuestDB migration that would have shipped in production.
When to use this skill:
- Database refactors (e.g., v3.x file-based → v4.x QuestDB)
- Schema migrations requiring validation
- Bulk data ingestion pipeline testing
- System migrations with multiple validation layers
- Pre-release validation for database-centric systems
Key outcomes:
- Parallel agent execution for comprehensive coverage
- Structured validation reporting (VALIDATION_FINDINGS.md)
- Bug discovery with severity classification (Critical/Medium/Low)
- Release readiness assessment
Core Methodology
1. Validation Architecture (3-Layer Model)
Layer 1: Environment Setup
- Container orchestration (Colima/Docker)
- Database deployment and schema application
- Connectivity validation (ILP, PostgreSQL, HTTP ports)
- Configuration file creation and validation
Layer 2: Data Flow Validation
- Bulk ingestion testing (CloudFront → QuestDB)
- Performance benchmarking against SLOs
- Multi-month data ingestion
- Deduplication testing (re-ingestion scenarios)
- Type conversion validation (FLOAT→LONG casts)
Layer 3: Query Interface Validation
- High-level query methods (get_latest, get_range, execute_sql)
- Edge cases (limit=1, cross-month boundaries)
- Error handling (invalid symbols, dates, parameters)
- Gap detection SQL compatibility
2. Agent Orchestration Pattern
Sequential vs Parallel Execution:
Agent 1 (Environment) → [SEQUENTIAL - prerequisite]
↓
Agent 2 (Bulk Loader) → [PARALLEL with Agent 3]
Agent 3 (Query Interface) → [PARALLEL with Agent 2]
Dependency Rule: Environment validation must pass before data flow/query validation
Dynamic Todo Management:
- Start with high-level plan (ADR-defined phases)
- Prune completed agents from todo list
- Grow todo list when bugs discovered (e.g., Bug #5 found by Agent 3)
- Update VALIDATION_FINDINGS.md incrementally
3. Validation Script Structure
Each agent produces:
- Test Script (e.g.,
test_bulk_loader.py)- 5+ test functions with clear pass/fail criteria
- Structured output (test name, result, details)
- Summary report at end
- Artifacts (logs, config files, evidence)
- Findings Report (bugs, severity, fix proposals)
Example Test Structure:
def test_feature(conn):
"""Test 1: Feature description"""
print("=" * 80)
print("TEST 1: Feature description")
print("=" * 80)
results = {}
# Test 1a: Subtest name
print("\n1a. Testing subtest:")
result_1a = perform_test()
print(f" Result: {result_1a}")
results["subtest_1a"] = result_1a == expected_1a
# Summary
print("\n" + "-" * 80)
all_passed = all(results.values())
print(f"Test 1 Results: {'✓ PASS' if all_passed else '✗ FAIL'}")
for test_name, passed in results.items():
print(f" - {test_name}: {'✓' if passed else '✗'}")
return {"success": all_passed, "details": results}
4. Bug Classification and Tracking
Severity Levels:
- 🔴 Critical: 100% system failure (e.g., API mismatch, timestamp corruption)
- 🟡 Medium: Degraded functionality (e.g., below SLO performance)
- 🟢 Low: Minor issues, edge cases
Bug Report Format:
#### Bug N: Descriptive Name (**SEVERITY** - Status)
**Location**: `file/path.py:line`
**Issue**: One-sentence description
**Impact**: Quantified impact (e.g., "100% ingestion failure")
**Root Cause**: Technical explanation
**Fix Applied**: Code changes with before/after
**Verification**: Test results proving fix
**Status**: ✅ FIXED / ⚠️ PARTIAL / ❌ OPEN
5. Release Readiness Decision Framework
Go/No-Go Criteria:
BLOCKER = Any Critical bug unfixed
SHIP = All Critical bugs fixed + (Medium bugs acceptable OR fixed)
DEFER = >3 Medium bugs unfixed OR any High-severity bug
Example Decision:
- 5 Critical bugs found → all fixed ✅
- 1 Medium bug (performance 55% below SLO) → acceptable ✅
- Verdict: RELEASE READY
Workflow: Step-by-Step
Step 1: Create Validation Plan (ADR-Driven)
Input: ADR document (e.g., ADR-0002 QuestDB Refactor) Output: Validation plan with 3-7 agents
Plan Structure:
## Validation Agents
### Agent 1: Environment Setup
- Deploy QuestDB via Docker
- Apply schema.sql
- Validate connectivity (ILP, PG, HTTP)
- Create .env configuration
### Agent 2: Bulk Loader Validation
- Test CloudFront → QuestDB ingestion
- Benchmark performance (target: >100K rows/sec)
- Validate deduplication (re-ingestion test)
- Multi-month ingestion test
### Agent 3: Query Interface Validation
- Test get_latest() with various limits
- Test get_range() with date boundaries
- Test execute_sql() with parameterized queries
- Test detect_gaps() SQL compatibility
- Test error handling (invalid inputs)
Step 2: Execute Agent 1 (Environment)
Directory Structure:
tmp/e2e-validation/
agent-1-env/
test_environment_setup.py
questdb.log
config.env
schema-check.txt
Validation Checklist:
- ✅ Container running
- ✅ Ports accessible (9009 ILP, 8812 PG, 9000 HTTP)
- ✅ Schema applied without errors
- ✅ .env file created
Step 3: Execute Agents 2-3 in Parallel
Agent 2: Bulk Loader
tmp/e2e-validation/
agent-2-bulk/
test_bulk_loader.py
ingestion_benchmark.txt
deduplication_test.txt
Agent 3: Query Interface
tmp/e2e-validation/
agent-3-query/
test_query_interface.py
gap_detection_test.txt
Execution:
# Terminal 1
cd tmp/e2e-validation/agent-2-bulk
uv run python test_bulk_loader.py
# Terminal 2
cd tmp/e2e-validation/agent-3-query
uv run python test_query_interface.py
Step 4: Document Findings in VALIDATION_FINDINGS.md
Template:
# E2E Validation Findings Report
**Validation ID**: ADR-XXXX
**Branch**: feat/database-refactor
**Date**: YYYY-MM-DD
**Target Release**: vX.Y.Z
**Status**: [BLOCKED / READY / IN_PROGRESS]
## Executive Summary
E2E validation discovered **N critical bugs** that would have caused [impact]:
| Finding | Severity | Status | Impact | Agent |
| ------- | -------- | ------ | ------------ | ------- |
| Bug 1 | Critical | Fixed | 100% failure | Agent 2 |
**Recommendation**: [RELEASE READY / BLOCKED / DEFER]
## Agent 1: Environment Setup - [STATUS]
...
## Agent 2: [Name] - [STATUS]
...
Step 5: Iterate on Fixes
For each bug:
- Document in VALIDATION_FINDINGS.md with 🔴/🟡/🟢 severity
- Apply fix to source code
- Re-run failing test
- Update bug status to ✅ FIXED
- Commit with semantic message (e.g.,
fix: correct timestamp parsing in CSV ingestion)
Example Fix Commit:
git add src/gapless_crypto_clickhouse/collectors/questdb_bulk_loader.py
git commit -m "fix: prevent pandas from treating first CSV column as index
BREAKING CHANGE: All timestamps were defaulting to epoch 0 (1970-01)
due to pandas read_csv() auto-indexing. Added index_col=False to
preserve first column as data.
Fixes #ABC-123"
Step 6: Final Validation and Release Decision
Run all tests:
/usr/bin/env bash << 'SKILL_SCRIPT_EOF'
cd tmp/e2e-validation
for agent in agent-*; do
echo "=== Running $agent ==="
cd $agent
uv run python test_*.py
cd ..
done
SKILL_SCRIPT_EOF
Update VALIDATION_FINDINGS.md status:
- Count Critical bugs: X fixed, Y open
- Count Medium bugs: X fixed, Y open
- Apply decision framework
- Update Status field to ✅ RELEASE READY or ❌ BLOCKED
Real-World Example: QuestDB Refactor Validation
Context: Migrating from file-based storage (v3.x) to QuestDB (v4.0.0)
Bugs Found:
- 🔴 Sender API mismatch - Used non-existent
Sender.from_uri()instead ofSender.from_conf() - 🔴 Type conversion -
number_of_tradessent as FLOAT, schema expects LONG - 🔴 Timestamp parsing - pandas treating first column as index → epoch 0 timestamps
- 🔴 Deduplication - WAL mode doesn't provide UPSERT semantics (needed
DEDUP ENABLE UPSERT KEYS) - 🔴 SQL incompatibility - detect_gaps() used nested window functions (QuestDB unsupported)
Impact: Without this validation, v4.0.0 would ship with 100% data corruption and 100% ingestion failure
Outcome: All 5 bugs fixed, system validated, v4.0.0 released successfully
Common Pitfalls
1. Skipping Environment Validation
❌ Bad: Assume Docker/database is working, jump to data ingestion tests ✅ Good: Agent 1 validates environment first, catches port conflicts, schema errors early
2. Serial Agent Execution
❌ Bad: Run Agent 2, wait for completion, then run Agent 3 ✅ Good: Run Agent 2 & 3 in parallel (no dependency between them)
3. Manual Test Reporting
❌ Bad: Copy/paste test output into Slack/email ✅ Good: Structured VALIDATION_FINDINGS.md with severity, status, fix tracking
4. Ignoring Medium Bugs
❌ Bad: "Performance is 55% below SLO, but we'll fix it later" ✅ Good: Document in VALIDATION_FINDINGS.md, make explicit go/no-go decision
5. No Re-validation After Fixes
❌ Bad: Apply fix, assume it works, move on ✅ Good: Re-run failing test, update status in VALIDATION_FINDINGS.md
Resources
scripts/
Not applicable - validation scripts are project-specific (stored in tmp/e2e-validation/)
references/
example_validation_findings.md- Complete VALIDATION_FINDINGS.md templateagent_test_template.py- Template for creating validation test scriptsbug_severity_classification.md- Detailed severity criteria and examples
assets/
Not applicable - validation artifacts are project-specific