| name | julien-workflow-queuing-background-tasks |
| description | Queue long-running tasks (transcoding, API calls, batch processing) to run in background at low priority when user is active, normal priority when idle. Use when scripts take minutes/hours and shouldn't impact PC performance during active use. |
| triggers | queue task, background job, idle queue, low priority task, run when idle, qm add, idle-queue, schedule this task, planifier cette tâche, deferred job, transcode video, transcoder vidéo, convert video background, ffmpeg background, ffmpeg en arrière-plan, conversion longue, long conversion, render video, faire le rendu, render vidéo en tâche de fond, encode footage, run blender render, convert mkv, script takes long, script prend du temps, long running script, slow script, script lent, batch processing, traitement par lot, this is taking forever, ça prend une éternité, queue heavy python script, without blocking, sans bloquer, don't block PC, ne pas bloquer le PC, keep PC responsive, garder le PC réactif, run without impact, low priority execution, don't slow down my machine, ne ralentis pas ma machine, keep my system responsive, resource-intensive task, tâche gourmande en ressources, heavy computation, calcul lourd, run in background, exécuter en arrière-plan, lancer en arrière-plan, background execution, execute when idle, exécuter quand inactif, run this when I'm away, exécute quand je ne suis pas là, process when computer is idle, do this asynchronously, faisons cela de manière asynchrone, bulk API calls, mass translation, batch encode, multiple file conversion, heavy task, tâche lourde, compress files when idle, traiter photos RAW, background ML training, train machine learning model, batch OCR, large file processing, traitement de gros fichiers, process data overnight, large data export, exportation volumineuse, scrape website background, pipeline data nightly, run backup background, compile in background, keep working while this runs, continuer à travailler pendant que ça tourne, encoder des vidéos, encode videos |
Idle Queue - Background Task Manager
Queue manager that runs jobs at low priority when user is active, and normal priority when idle (5min inactivity).
Prerequisites
- Python 3.10+
- Service must be running before adding jobs
- Windows only (uses Windows API for idle detection)
Quick Start
Verified behavior: When user is active, jobs run at IDLE priority (4) - your PC stays responsive. After 5 minutes idle, priority increases for faster execution. Only 1 job runs when active.
# 1. Start the service (keep this terminal open)
qm start --foreground
# 2. In another terminal, add a job
qm add "python my_script.py" --name "My Task"
# 3. Monitor
qm list
qm logs 1
Service Startup
Manual start
qm start # Background (daemon)
qm start --foreground # With dashboard at http://127.0.0.1:8742
Auto-start at login (Windows)
# Create shortcut in startup folder
# Target: pythonw -m idle_queue.cli start
# Or add to Task Scheduler
Check if service is running
qm status # Shows service status
curl http://127.0.0.1:8742/api/status # API check
When to Use
- Scripts taking > 30 seconds
- Batch processing (transcoding, conversions)
- API-heavy operations (translations, LLM calls)
- Any task that shouldn't block user work
CLI Commands
All commands via python -m idle_queue.cli or qm (if installed):
# Add a job to queue
qm add "python script.py" --name "My Task"
qm add "ffmpeg -i in.mp4 out.webm" --name "Transcode" --cwd "C:/videos"
qm add "node build.js" --force # Run even when user active
# List jobs
qm list # All jobs
qm list --status pending # Filter by status
# Job details
qm status <id> # Full job info
qm logs <id> # View stdout/stderr
qm logs <id> --follow # Stream logs live
# Job management
qm cancel <id> # Cancel pending/running job
qm retry <id> # Retry failed job
qm force <id> # Force pending job to run now
# Service control
qm start # Start as background service
qm start --foreground # Start with dashboard
qm stop # Stop service
# Configuration
qm config show # Show current config
qm config set workers.max_when_idle 4
REST API
Base URL: http://127.0.0.1:8742/api/
| Method | Endpoint | Description |
|---|---|---|
| GET | /status |
Service status (running, activity_state, job counts) |
| GET | /jobs |
List all jobs |
| POST | /jobs |
Create job {command, name?, cwd?, force?} |
| GET | /jobs/{id} |
Job details |
| DELETE | /jobs/{id} |
Cancel job |
| POST | /jobs/{id}/retry |
Retry failed job |
| POST | /jobs/{id}/force |
Force pending job |
| GET | /jobs/{id}/logs |
Get job logs |
| GET | /jobs/{id}/logs/stream |
SSE log stream |
Job Statuses
pending- Waiting in queuerunning- Currently executingcompleted- Finished successfully (exit_code=0)failed- Finished with error (exit_code!=0)cancelled- Manually cancelled
Usage Patterns
Queue a Python script
qm add "python process_data.py --input data.csv" --name "Process CSV"
Queue with working directory
qm add "npm run build" --name "Build Project" --cwd "C:/projects/myapp"
Force immediate execution
qm add "python urgent.py" --name "Urgent Task" --force
Check job and get logs
qm status 42
qm logs 42
API usage from Python
import requests
# Add job
r = requests.post("http://127.0.0.1:8742/api/jobs", json={
"command": "python long_task.py",
"name": "Background Task"
})
job_id = r.json()["id"]
# Check status
status = requests.get(f"http://127.0.0.1:8742/api/jobs/{job_id}").json()
print(status["status"]) # pending, running, completed, failed
Important Notes
- Service must be running - Start with
qm startbefore adding jobs - Dashboard available at
http://127.0.0.1:8742/when service runs - Logs stored in
%APPDATA%\idle-queue\logs\ - Config file at
%APPDATA%\idle-queue\config.yaml - Duplicate detection - Same command+cwd rejected unless
--force-duplicate
Priority Behavior (Verified)
| User State | Max Workers | CPU Priority | I/O Priority |
|---|---|---|---|
| Active | 1 | IDLE (4) | VERY_LOW |
| Idle (5min) | Unlimited | BELOW_NORMAL | NORMAL |
Tested: Process shows Priority: 4 (IDLE_PRIORITY_CLASS) when user is active.
Troubleshooting
Special characters in paths (IMPORTANT)
Problem: Shell escaping issues with special characters in file paths.
| Character | Issue | CLI workaround |
|---|---|---|
! |
Escaped to \! |
Use API or --cwd |
' (single quote) |
Breaks quoting | Use double quotes, escape with '\'' |
" (double quote) |
Needs escaping | Use \" inside double-quoted strings |
(space) |
Needs quoting | Always quote paths with spaces |
& |
Shell interprets as background | Quote the entire command |
() |
Shell interprets as subshell | Quote or escape |
$ |
Variable expansion | Use single quotes or escape \$ |
| Accents (é, ü) | Encoding issues | Ensure UTF-8, use API |
Recommended approach by complexity:
# SIMPLE - paths without special characters
qm add "ffmpeg -i input.mp4 output.mp4"
# MEDIUM - use --cwd to avoid path issues
qm add "ffmpeg -i input.mp4 output.mp4" --cwd "C:/Movies/My Folder"
# COMPLEX - use API for any special characters
python -c "
import requests
requests.post('http://127.0.0.1:8742/api/jobs', json={
'command': 'ffmpeg -i \"C:/Movies/What\\'s Up!.mp4\" out.mp4',
'name': 'Transcode'
})
"
Why API is safest: The API receives JSON directly without shell parsing, so special characters are preserved exactly as-is.
Service won't start
# Check if port is already in use
netstat -ano | findstr 8742
# Kill process using port
taskkill /F /PID <pid>
# Retry
qm start --foreground
Job stuck in "pending"
- Service not running →
qm start - User is active + job not forced → wait for idle or
qm force <id>
Job fails immediately
# Check logs for error
qm logs <id>
# Common causes:
# - Command not found → check PATH or use full path
# - Working directory doesn't exist → verify --cwd path
# - Permission denied → run as admin if needed
Can't connect to API/Dashboard
- Service not running →
qm start - Wrong port → check
qm config showfor api.port - Firewall blocking → allow port 8742
Logs not appearing
- Job hasn't started yet (pending)
- Log directory permissions → check
%APPDATA%\idle-queue\logs\
Skill Chaining
Skills Required Before
- None
Input Expected
- Long-running command to execute
- Optional: name, working directory, force flag
Output Produced
- Format: Job ID and status
- Side effects: Creates job in queue, executes when appropriate
- Logs: Stored in %APPDATA%\idle-queue\logs/
Compatible Skills After
- Any skill that needs to wait for background processing
Tools Used
Bash(usage: run qm commands)WebFetch(usage: API calls if needed)
Usage Example
Scenario: User asks to transcode videos
Command:
qm add "ffmpeg -i input.mp4 -c:v libx265 output.mp4" --name "Transcode to H265"
Result: Job queued, runs at low priority, notifications on completion