Claude Code Plugins

Community-maintained marketplace

Feedback
0
0

Data quality testing with dbt tests, Great Expectations, and monitoring.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-quality
description Data quality testing with dbt tests, Great Expectations, and monitoring.

Data Quality

Quality Dimensions

Dimension Description Test
Completeness No missing values NOT NULL, count checks
Uniqueness No duplicates UNIQUE, distinct counts
Validity Values in range Range checks, regex
Consistency Matches across sources Cross-table checks
Timeliness Data is fresh Freshness checks

dbt Tests

Schema Tests

models:
  - name: fct_orders
    columns:
      - name: order_id
        tests:
          - unique
          - not_null
      - name: status
        tests:
          - accepted_values:
              values: ['pending', 'completed', 'cancelled']
      - name: amount
        tests:
          - not_null
          - dbt_utils.accepted_range:
              min_value: 0
              max_value: 1000000

Custom Tests

-- tests/assert_positive_revenue.sql
select *
from {{ ref('fct_orders') }}
where amount < 0

Relationship Tests

- name: customer_id
  tests:
    - relationships:
        to: ref('dim_customer')
        field: customer_id

Great Expectations

import great_expectations as gx

context = gx.get_context()

validator = context.sources.pandas_default.read_csv("data.csv")

validator.expect_column_values_to_not_be_null("order_id")
validator.expect_column_values_to_be_unique("order_id")
validator.expect_column_values_to_be_between("amount", 0, 1000000)

results = validator.validate()

Monitoring

  • Row count trends
  • Null percentage trends
  • Schema drift detection
  • Freshness SLAs
  • Anomaly detection