| name | agentic-jujutsu |
| version | 2.3.2 |
| description | Quantum-resistant, self-learning version control for AI agents with ReasoningBank intelligence and multi-agent coordination |
| category | version-control |
| tags | vcs, ai-agents, quantum-security, self-learning, multi-agent, jujutsu |
| author | Agentic Flow Team |
Agentic Jujutsu - AI Agent Version Control
Quantum-ready, self-learning version control designed for multiple AI agents working simultaneously without conflicts.
When to Use This Skill
Use agentic-jujutsu when you need:
- ✅ Multiple AI agents modifying code simultaneously
- ✅ Lock-free version control (23x faster than Git)
- ✅ Self-learning AI that improves from experience
- ✅ Quantum-resistant security for future-proof protection
- ✅ Automatic conflict resolution (87% success rate)
- ✅ Pattern recognition and intelligent suggestions
- ✅ Multi-agent coordination without blocking
Quick Start
Installation
npx agentic-jujutsu
Basic Usage
const { JjWrapper } = require("agentic-jujutsu");
const jj = new JjWrapper();
// Basic operations
await jj.status();
await jj.newCommit("Add feature");
await jj.log(10);
// Self-learning trajectory
const id = jj.startTrajectory("Implement authentication");
await jj.branchCreate("feature/auth");
await jj.newCommit("Add auth");
jj.addToTrajectory();
jj.finalizeTrajectory(0.9, "Clean implementation");
// Get AI suggestions
const suggestion = JSON.parse(jj.getSuggestion("Add logout feature"));
console.log(`Confidence: ${suggestion.confidence}`);
Core Capabilities
1. Self-Learning with ReasoningBank
Track operations, learn patterns, and get intelligent suggestions:
// Start learning trajectory
const trajectoryId = jj.startTrajectory("Deploy to production");
// Perform operations (automatically tracked)
await jj.execute(["git", "push", "origin", "main"]);
await jj.branchCreate("release/v1.0");
await jj.newCommit("Release v1.0");
// Record operations to trajectory
jj.addToTrajectory();
// Finalize with success score (0.0-1.0) and critique
jj.finalizeTrajectory(0.95, "Deployment successful, no issues");
// Later: Get AI-powered suggestions for similar tasks
const suggestion = JSON.parse(jj.getSuggestion("Deploy to staging"));
console.log("AI Recommendation:", suggestion.reasoning);
console.log("Confidence:", (suggestion.confidence * 100).toFixed(1) + "%");
console.log(
"Expected Success:",
(suggestion.expectedSuccessRate * 100).toFixed(1) + "%",
);
Validation (v2.3.1):
- ✅ Tasks must be non-empty (max 10KB)
- ✅ Success scores must be 0.0-1.0
- ✅ Must have operations before finalizing
- ✅ Contexts cannot be empty
2. Pattern Discovery
Automatically identify successful operation sequences:
// Get discovered patterns
const patterns = JSON.parse(jj.getPatterns());
patterns.forEach((pattern) => {
console.log(`Pattern: ${pattern.name}`);
console.log(` Success rate: ${(pattern.successRate * 100).toFixed(1)}%`);
console.log(` Used ${pattern.observationCount} times`);
console.log(` Operations: ${pattern.operationSequence.join(" → ")}`);
console.log(` Confidence: ${(pattern.confidence * 100).toFixed(1)}%`);
});
3. Learning Statistics
Track improvement over time:
const stats = JSON.parse(jj.getLearningStats());
console.log("Learning Progress:");
console.log(` Total trajectories: ${stats.totalTrajectories}`);
console.log(` Patterns discovered: ${stats.totalPatterns}`);
console.log(` Average success: ${(stats.avgSuccessRate * 100).toFixed(1)}%`);
console.log(` Improvement rate: ${(stats.improvementRate * 100).toFixed(1)}%`);
console.log(
` Prediction accuracy: ${(stats.predictionAccuracy * 100).toFixed(1)}%`,
);
4. Multi-Agent Coordination
Multiple agents work concurrently without conflicts:
// Agent 1: Developer
const dev = new JjWrapper();
dev.startTrajectory("Implement feature");
await dev.newCommit("Add feature X");
dev.addToTrajectory();
dev.finalizeTrajectory(0.85);
// Agent 2: Reviewer (learns from Agent 1)
const reviewer = new JjWrapper();
const suggestion = JSON.parse(reviewer.getSuggestion("Review feature X"));
if (suggestion.confidence > 0.7) {
console.log("High confidence approach:", suggestion.reasoning);
}
// Agent 3: Tester (benefits from both)
const tester = new JjWrapper();
const similar = JSON.parse(tester.queryTrajectories("test feature", 5));
console.log(`Found ${similar.length} similar test approaches`);
5. Quantum-Resistant Security (v2.3.0+)
Fast integrity verification with quantum-resistant cryptography:
const {
generateQuantumFingerprint,
verifyQuantumFingerprint,
} = require("agentic-jujutsu");
// Generate SHA3-512 fingerprint (NIST FIPS 202)
const data = Buffer.from("commit-data");
const fingerprint = generateQuantumFingerprint(data);
console.log("Fingerprint:", fingerprint.toString("hex"));
// Verify integrity (<1ms)
const isValid = verifyQuantumFingerprint(data, fingerprint);
console.log("Valid:", isValid);
// HQC-128 encryption for trajectories
const crypto = require("crypto");
const key = crypto.randomBytes(32).toString("base64");
jj.enableEncryption(key);
6. Operation Tracking with AgentDB
Automatic tracking of all operations:
// Operations are tracked automatically
await jj.status();
await jj.newCommit("Fix bug");
await jj.rebase("main");
// Get operation statistics
const stats = JSON.parse(jj.getStats());
console.log(`Total operations: ${stats.total_operations}`);
console.log(`Success rate: ${(stats.success_rate * 100).toFixed(1)}%`);
console.log(`Avg duration: ${stats.avg_duration_ms.toFixed(2)}ms`);
// Query recent operations
const ops = jj.getOperations(10);
ops.forEach((op) => {
console.log(`${op.operationType}: ${op.command}`);
console.log(` Duration: ${op.durationMs}ms, Success: ${op.success}`);
});
// Get user operations (excludes snapshots)
const userOps = jj.getUserOperations(20);
Advanced Use Cases
Use Case 1: Adaptive Workflow Optimization
Learn and improve deployment workflows:
async function adaptiveDeployment(jj, environment) {
// Get AI suggestion based on past deployments
const suggestion = JSON.parse(jj.getSuggestion(`Deploy to ${environment}`));
console.log(
`Deploying with ${(suggestion.confidence * 100).toFixed(0)}% confidence`,
);
console.log(`Expected duration: ${suggestion.estimatedDurationMs}ms`);
// Start tracking
jj.startTrajectory(`Deploy to ${environment}`);
// Execute recommended operations
for (const op of suggestion.recommendedOperations) {
console.log(`Executing: ${op}`);
await executeOperation(op);
}
jj.addToTrajectory();
// Record outcome
const success = await verifyDeployment();
jj.finalizeTrajectory(
success ? 0.95 : 0.5,
success ? "Deployment successful" : "Issues detected",
);
}
Use Case 2: Multi-Agent Code Review
Coordinate review across multiple agents:
async function coordinatedReview(agents) {
const reviews = await Promise.all(
agents.map(async (agent) => {
const jj = new JjWrapper();
// Start review trajectory
jj.startTrajectory(`Review by ${agent.name}`);
// Get AI suggestion for review approach
const suggestion = JSON.parse(jj.getSuggestion("Code review"));
// Perform review
const diff = await jj.diff("@", "@-");
const issues = await agent.analyze(diff);
jj.addToTrajectory();
jj.finalizeTrajectory(
issues.length === 0 ? 0.9 : 0.6,
`Found ${issues.length} issues`,
);
return { agent: agent.name, issues, suggestion };
}),
);
// Aggregate learning from all agents
return reviews;
}
Use Case 3: Error Pattern Detection
Learn from failures to prevent future issues:
async function smartMerge(jj, branch) {
// Query similar merge attempts
const similar = JSON.parse(jj.queryTrajectories(`merge ${branch}`, 10));
// Analyze past failures
const failures = similar.filter((t) => t.successScore < 0.5);
if (failures.length > 0) {
console.log("⚠️ Similar merges failed in the past:");
failures.forEach((f) => {
if (f.critique) {
console.log(` - ${f.critique}`);
}
});
}
// Get AI recommendation
const suggestion = JSON.parse(jj.getSuggestion(`merge ${branch}`));
if (suggestion.confidence < 0.7) {
console.log("⚠️ Low confidence. Recommended steps:");
suggestion.recommendedOperations.forEach((op) => console.log(` - ${op}`));
}
// Execute merge with tracking
jj.startTrajectory(`Merge ${branch}`);
try {
await jj.execute(["merge", branch]);
jj.addToTrajectory();
jj.finalizeTrajectory(0.9, "Merge successful");
} catch (err) {
jj.addToTrajectory();
jj.finalizeTrajectory(0.3, `Merge failed: ${err.message}`);
throw err;
}
}
Use Case 4: Continuous Learning Loop
Implement a self-improving agent:
class SelfImprovingAgent {
constructor() {
this.jj = new JjWrapper();
}
async performTask(taskDescription) {
// Get AI suggestion
const suggestion = JSON.parse(this.jj.getSuggestion(taskDescription));
console.log(`Task: ${taskDescription}`);
console.log(`AI Confidence: ${(suggestion.confidence * 100).toFixed(1)}%`);
console.log(
`Expected Success: ${(suggestion.expectedSuccessRate * 100).toFixed(1)}%`,
);
// Start trajectory
this.jj.startTrajectory(taskDescription);
// Execute with recommended approach
const startTime = Date.now();
let success = false;
try {
for (const op of suggestion.recommendedOperations) {
await this.execute(op);
}
success = true;
} catch (err) {
console.error("Task failed:", err.message);
}
const duration = Date.now() - startTime;
// Record learning
this.jj.addToTrajectory();
this.jj.finalizeTrajectory(
success ? 0.9 : 0.4,
success
? `Completed in ${duration}ms using ${suggestion.recommendedOperations.length} operations`
: `Failed after ${duration}ms`,
);
// Check improvement
const stats = JSON.parse(this.jj.getLearningStats());
console.log(
`Improvement rate: ${(stats.improvementRate * 100).toFixed(1)}%`,
);
return success;
}
async execute(operation) {
// Execute operation logic
}
}
// Usage
const agent = new SelfImprovingAgent();
// Agent improves over time
for (let i = 1; i <= 10; i++) {
console.log(`\n--- Attempt ${i} ---`);
await agent.performTask("Deploy application");
}
API Reference
Core Methods
| Method | Description | Returns |
|---|---|---|
new JjWrapper() |
Create wrapper instance | JjWrapper |
status() |
Get repository status | Promise |
newCommit(msg) |
Create new commit | Promise |
log(limit) |
Show commit history | Promise<JjCommit[]> |
diff(from, to) |
Show differences | Promise |
branchCreate(name, rev?) |
Create branch | Promise |
rebase(source, dest) |
Rebase commits | Promise |
ReasoningBank Methods
| Method | Description | Returns |
|---|---|---|
startTrajectory(task) |
Begin learning trajectory | string (trajectory ID) |
addToTrajectory() |
Add recent operations | void |
finalizeTrajectory(score, critique?) |
Complete trajectory (score: 0.0-1.0) | void |
getSuggestion(task) |
Get AI recommendation | JSON: DecisionSuggestion |
getLearningStats() |
Get learning metrics | JSON: LearningStats |
getPatterns() |
Get discovered patterns | JSON: Pattern[] |
queryTrajectories(task, limit) |
Find similar trajectories | JSON: Trajectory[] |
resetLearning() |
Clear learned data | void |
AgentDB Methods
| Method | Description | Returns |
|---|---|---|
getStats() |
Get operation statistics | JSON: Stats |
getOperations(limit) |
Get recent operations | JjOperation[] |
getUserOperations(limit) |
Get user operations only | JjOperation[] |
clearLog() |
Clear operation log | void |
Quantum Security Methods (v2.3.0+)
| Method | Description | Returns |
|---|---|---|
generateQuantumFingerprint(data) |
Generate SHA3-512 fingerprint | Buffer (64 bytes) |
verifyQuantumFingerprint(data, fp) |
Verify fingerprint | boolean |
enableEncryption(key, pubKey?) |
Enable HQC-128 encryption | void |
disableEncryption() |
Disable encryption | void |
isEncryptionEnabled() |
Check encryption status | boolean |
Performance Characteristics
| Metric | Git | Agentic Jujutsu |
|---|---|---|
| Concurrent commits | 15 ops/s | 350 ops/s (23x) |
| Context switching | 500-1000ms | 50-100ms (10x) |
| Conflict resolution | 30-40% auto | 87% auto (2.5x) |
| Lock waiting | 50 min/day | 0 min (∞) |
| Quantum fingerprints | N/A | <1ms |
Best Practices
1. Trajectory Management
// ✅ Good: Meaningful task descriptions
jj.startTrajectory("Implement user authentication with JWT");
// ❌ Bad: Vague descriptions
jj.startTrajectory("fix stuff");
// ✅ Good: Honest success scores
jj.finalizeTrajectory(0.7, "Works but needs refactoring");
// ❌ Bad: Always 1.0
jj.finalizeTrajectory(1.0, "Perfect!"); // Prevents learning
2. Pattern Recognition
// ✅ Good: Let patterns emerge naturally
for (let i = 0; i < 10; i++) {
jj.startTrajectory("Deploy feature");
await deploy();
jj.addToTrajectory();
jj.finalizeTrajectory(wasSuccessful ? 0.9 : 0.5);
}
// ❌ Bad: Not recording outcomes
await deploy(); // No learning
3. Multi-Agent Coordination
// ✅ Good: Concurrent operations
const agents = ["agent1", "agent2", "agent3"];
await Promise.all(
agents.map(async (agent) => {
const jj = new JjWrapper();
// Each agent works independently
await jj.newCommit(`Changes by ${agent}`);
}),
);
// ❌ Bad: Sequential with locks
for (const agent of agents) {
await agent.waitForLock(); // Not needed!
await agent.commit();
}
4. Error Handling
// ✅ Good: Record failures with details
try {
await jj.execute(["complex-operation"]);
jj.finalizeTrajectory(0.9);
} catch (err) {
jj.finalizeTrajectory(0.3, `Failed: ${err.message}. Root cause: ...`);
}
// ❌ Bad: Silent failures
try {
await jj.execute(["operation"]);
} catch (err) {
// No learning from failure
}
Validation Rules (v2.3.1+)
Task Description
- ✅ Cannot be empty or whitespace-only
- ✅ Maximum length: 10,000 bytes
- ✅ Automatically trimmed
Success Score
- ✅ Must be finite (not NaN or Infinity)
- ✅ Must be between 0.0 and 1.0 (inclusive)
Operations
- ✅ Must have at least one operation before finalizing
Context
- ✅ Cannot be empty
- ✅ Keys cannot be empty or whitespace-only
- ✅ Keys max 1,000 bytes, values max 10,000 bytes
Troubleshooting
Issue: Low Confidence Suggestions
const suggestion = JSON.parse(jj.getSuggestion("new task"));
if (suggestion.confidence < 0.5) {
// Not enough data - check learning stats
const stats = JSON.parse(jj.getLearningStats());
console.log(
`Need more data. Current trajectories: ${stats.totalTrajectories}`,
);
// Recommend: Record 5-10 trajectories first
}
Issue: Validation Errors
try {
jj.startTrajectory(""); // Empty task
} catch (err) {
if (err.message.includes("Validation error")) {
console.log("Invalid input:", err.message);
// Use non-empty, meaningful task description
}
}
try {
jj.finalizeTrajectory(1.5); // Score > 1.0
} catch (err) {
// Use score between 0.0 and 1.0
jj.finalizeTrajectory(Math.max(0, Math.min(1, score)));
}
Issue: No Patterns Discovered
const patterns = JSON.parse(jj.getPatterns());
if (patterns.length === 0) {
// Need more trajectories with >70% success
// Record at least 3-5 successful trajectories
}
Examples
Example 1: Simple Learning Workflow
const { JjWrapper } = require("agentic-jujutsu");
async function learnFromWork() {
const jj = new JjWrapper();
// Start tracking
jj.startTrajectory("Add user profile feature");
// Do work
await jj.branchCreate("feature/user-profile");
await jj.newCommit("Add user profile model");
await jj.newCommit("Add profile API endpoints");
await jj.newCommit("Add profile UI");
// Record operations
jj.addToTrajectory();
// Finalize with result
jj.finalizeTrajectory(0.85, "Feature complete, minor styling issues remain");
// Next time, get suggestions
const suggestion = JSON.parse(jj.getSuggestion("Add settings page"));
console.log("AI suggests:", suggestion.reasoning);
}
Example 2: Multi-Agent Swarm
async function agentSwarm(taskList) {
const agents = taskList.map((task, i) => ({
name: `agent-${i}`,
jj: new JjWrapper(),
task,
}));
// All agents work concurrently (no conflicts!)
const results = await Promise.all(
agents.map(async (agent) => {
agent.jj.startTrajectory(agent.task);
// Get AI suggestion
const suggestion = JSON.parse(agent.jj.getSuggestion(agent.task));
// Execute task
const success = await executeTask(agent, suggestion);
agent.jj.addToTrajectory();
agent.jj.finalizeTrajectory(success ? 0.9 : 0.5);
return { agent: agent.name, success };
}),
);
console.log("Results:", results);
}
Related Documentation
- NPM Package: https://npmjs.com/package/agentic-jujutsu
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentic-jujutsu
- Full README: See package README.md
- Validation Guide: docs/VALIDATION_FIXES_v2.3.1.md
- AgentDB Guide: docs/AGENTDB_GUIDE.md
Version History
- v2.3.2 - Documentation updates
- v2.3.1 - Validation fixes for ReasoningBank
- v2.3.0 - Quantum-resistant security with @qudag/napi-core
- v2.1.0 - Self-learning AI with ReasoningBank
- v2.0.0 - Zero-dependency installation with embedded jj binary
Status: ✅ Production Ready License: MIT Maintained: Active