| name | stata-mcp |
| description | Run or debug Stata workflows through the local io.github.tmonk/mcp-stata server. Use when users mention Stata commands, .do files, r()/e() results, dataset inspection, or Stata graph exports. |
Stata MCP Skill
Instructions
- Ensure the
stataMCP server is registered (see project README for config) and request it if not already active. - When the user asks for Stata work:
- Use
run_commandfor ad-hoc syntax (trace=Truefor call stacks,raw=Truefor plain output). - Use
load_databefore analyses that require datasets. - Use
get_data,describe,codebook, orget_variable_listto inspect data. - Use
run_do_filefor provided.doscripts. - Use
export_graph/export_graphs_allfor visualization requests. - Use
get_helpwhen the user wants Stata documentation. - Use
get_stored_resultsto returnr()/e()scalars/macros after commands for validation. - Use
read_logto tail or retrieve output from long-running commands. - Use
get_ui_channelto obtain a localhost HTTP endpoint for high-volume data browsing.
- Use
- Surface
rc/stderrinfo back to the user, referencingr()/e()codes. - If Stata isn't auto-discovered, remind the user to set
STATA_PATH(examples in README).
Tool quick reference
Command Execution
run_command(code, echo=True, as_json=True, trace=False, raw=False, max_output_lines=None): Run Stata syntax.code: The Stata command(s) to execute.echo: Include the command itself in output (default: True).as_json: Return JSON envelope with rc/stdout/stderr/error (default: True).trace: Enableset trace onfor deeper error diagnostics (default: False).raw: Return plain stdout/error message instead of JSON (default: False).max_output_lines: Truncate output to this many lines (default: None for no truncation).- Note: Always writes output to a temporary log file and emits a
notifications/logMessagewith{"event":"log_path","path":"..."}so the client can tail it locally.
run_do_file(path, echo=True, as_json=True, trace=False, raw=False, max_output_lines=None): Execute .do files.path: Path to the .do file.echo: Include commands in output (default: True).as_json: Return JSON envelope (default: True).trace: Enable trace mode for debugging (default: False).raw: Return plain output instead of JSON (default: False).max_output_lines: Truncate output to this many lines (default: None).- Note: Always writes output to a temporary log file and emits incremental
notifications/progresswhen the client provides a progress token/callback.
read_log(path, offset=0, max_bytes=65536): Read a slice of a previously-provided log file.path: Path to the log file (fromnotifications/logMessage).offset: Byte offset to start reading from (default: 0).max_bytes: Maximum bytes to read (default: 65536).- Returns JSON:
path,offset,next_offset,data.
Data Loading & Inspection
load_data(source, clear=True, as_json=True, raw=False, max_output_lines=None): Load data using sysuse/webuse/use heuristics.source: Dataset name, URL, or file path (e.g., "auto", "webuse nlsw88", "/path/to/file.dta").clear: Append, clearto replace existing data (default: True).as_json: Return JSON envelope (default: True).raw: Return plain output (default: False).max_output_lines: Truncate output to this many lines (default: None).
get_data(start=0, count=50): Retrieve a slice of the active dataset as JSON.start: Zero-based index of first observation (default: 0).count: Number of observations to retrieve (default: 50, max: 500).
describe(): Return variable descriptions, storage types, and labels.get_variable_list(): Return JSON list of all variables with names, labels, and types.codebook(variable, as_json=True, trace=False, raw=False, max_output_lines=None): Return codebook/summary for a specific variable.variable: Variable name to describe.as_json: Return JSON envelope (default: True).trace: Enable trace mode (default: False).raw: Return plain output (default: False).max_output_lines: Truncate output to this many lines (default: None).
Graph Management
list_graphs(): List all graphs in Stata's memory with active graph marked.export_graph(graph_name=None, format="pdf"): Export a stored graph to file.graph_name: Name of graph to export (fromlist_graphs); if None, exports active graph.format: Output format—"pdf" (default) or "png". Use "png" to view plots directly.
export_graphs_all(): Export all graphs in memory. Returns file paths by default.
Help & Results
get_help(topic, plain_text=False): Return Stata help text.topic: Command or help topic (e.g., "regress", "graph").plain_text: Return plain text instead of Markdown (default: False).
get_stored_results(): Return currentr()ande()results as JSON after a command.
UI Data Browser
get_ui_channel(): Return a short-lived localhost HTTP endpoint + bearer token for the UI-only data browser.- Returns JSON with
baseUrl,token,expiresAt, andcapabilities. - Intended for VS Code extension UI to browse data at high volume (paging, filtering, sorting) without sending large payloads over MCP.
- Loopback only (binds to
127.0.0.1), requires bearer auth.
- Returns JSON with
Cancellation
- Clients may cancel an in-flight request by sending the MCP notification
notifications/cancelledwithparams.requestIdset to the original tool call ID. - Pass a
_meta.progressTokenwhen invoking the tool if you want progress updates (optional). - Cancellation is best-effort and depends on Stata surfacing
BreakError.
MCP Resources
The server exposes these resources for MCP clients:
stata://data/summary→summarizestata://data/metadata→describestata://graphs/list→ graph liststata://variables/list→ variable liststata://results/stored→ stored r()/e() results
Graph review workflow
- Call
list_graphs()to see available plots and identify the active graph. - Use
export_graphs_all()to fetch file paths for every graph; view them directly in the client. - For a single plot, call
export_graph(graph_name="GraphName", format="png")to get a viewable file. - Compare the rendered PNGs to the user spec (titles, axes labels, legends, colors, filters); state whether the graph matches and what to change.
Examples
Run a regression
# Load sample data and run regression
load_data("auto")
run_command("regress price mpg")
get_stored_results() # Retrieve coefficients and statistics
Export a histogram
# Create and export a graph
run_command("histogram price")
list_graphs() # Confirm graph exists
export_graph(graph_name="Graph", format="png") # Export for viewing
Debug a do-file
run_do_file("/path/to/analysis.do", trace=True)
Inspect data structure
load_data("nlsw88", clear=True)
describe()
get_variable_list()
codebook("wage")
get_data(start=0, count=10)
Read log output from long-running command
# After run_command emits a log_path notification
read_log("/tmp/stata_log_abc123.log", offset=0)
# Continue reading with next_offset for incremental output
read_log("/tmp/stata_log_abc123.log", offset=4096)