Claude Code Plugins

Community-maintained marketplace

Feedback

database-expert

@travisjneuman/.claude
0
0

Advanced database design and administration for PostgreSQL, MongoDB, and Redis. Use when designing schemas, optimizing queries, managing database performance, or implementing data patterns.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name database-expert
description Advanced database design and administration for PostgreSQL, MongoDB, and Redis. Use when designing schemas, optimizing queries, managing database performance, or implementing data patterns.

Database Expert

Comprehensive guide for database design, optimization, and administration.

Database Selection

Database Type Best For
PostgreSQL Relational Complex queries, ACID, JSON support
MongoDB Document Flexible schemas, rapid iteration
Redis Key-Value Caching, sessions, real-time
SQLite Embedded Mobile, desktop, testing

PostgreSQL

Schema Design

-- Users table with proper constraints
CREATE TABLE users (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    email VARCHAR(255) NOT NULL UNIQUE,
    password_hash VARCHAR(255) NOT NULL,
    full_name VARCHAR(100) NOT NULL,
    status VARCHAR(20) NOT NULL DEFAULT 'active'
        CHECK (status IN ('active', 'inactive', 'suspended')),
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
);

-- Index for common queries
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_status ON users(status) WHERE status = 'active';

-- Automatic updated_at trigger
CREATE OR REPLACE FUNCTION update_updated_at_column()
RETURNS TRIGGER AS $$
BEGIN
    NEW.updated_at = NOW();
    RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER update_users_updated_at
    BEFORE UPDATE ON users
    FOR EACH ROW
    EXECUTE FUNCTION update_updated_at_column();

-- Posts with full-text search
CREATE TABLE posts (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    author_id UUID NOT NULL REFERENCES users(id) ON DELETE CASCADE,
    title VARCHAR(255) NOT NULL,
    content TEXT NOT NULL,
    tags TEXT[] DEFAULT '{}',
    search_vector TSVECTOR,
    published_at TIMESTAMPTZ,
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
);

-- Full-text search index
CREATE INDEX idx_posts_search ON posts USING GIN(search_vector);

Query Optimization

-- EXPLAIN ANALYZE for query analysis
EXPLAIN (ANALYZE, BUFFERS, FORMAT TEXT)
SELECT u.full_name, COUNT(p.id) as post_count
FROM users u
LEFT JOIN posts p ON p.author_id = u.id
WHERE u.status = 'active'
GROUP BY u.id
ORDER BY post_count DESC
LIMIT 10;

-- Partial index for filtered queries
CREATE INDEX idx_posts_published
ON posts(published_at)
WHERE published_at IS NOT NULL;

-- Covering index (index-only scan)
CREATE INDEX idx_posts_author_title
ON posts(author_id)
INCLUDE (title, published_at);

-- Expression index
CREATE INDEX idx_users_email_lower
ON users(LOWER(email));

Advanced Features

-- Common Table Expression (CTE)
WITH active_authors AS (
    SELECT DISTINCT author_id
    FROM posts
    WHERE published_at > NOW() - INTERVAL '30 days'
),
author_stats AS (
    SELECT
        u.id,
        u.full_name,
        COUNT(p.id) as total_posts
    FROM users u
    JOIN active_authors aa ON aa.author_id = u.id
    LEFT JOIN posts p ON p.author_id = u.id
    GROUP BY u.id
)
SELECT * FROM author_stats
ORDER BY total_posts DESC;

-- Window functions
SELECT
    id,
    title,
    author_id,
    published_at,
    ROW_NUMBER() OVER (PARTITION BY author_id ORDER BY published_at DESC) as author_rank,
    LAG(published_at) OVER (PARTITION BY author_id ORDER BY published_at) as prev_post_date
FROM posts
WHERE published_at IS NOT NULL;

-- JSON operations
SELECT
    id,
    metadata->>'source' as source,
    metadata->'stats'->>'views' as views
FROM posts
WHERE metadata @> '{"featured": true}';

-- Recursive CTE (for hierarchies)
WITH RECURSIVE category_tree AS (
    SELECT id, name, parent_id, 0 as depth
    FROM categories
    WHERE parent_id IS NULL
    UNION ALL
    SELECT c.id, c.name, c.parent_id, ct.depth + 1
    FROM categories c
    JOIN category_tree ct ON c.parent_id = ct.id
    WHERE ct.depth < 10
)
SELECT * FROM category_tree ORDER BY depth;

MongoDB

Schema Design Patterns

// Embedding (for 1:few relationships)
const userSchema = {
  _id: ObjectId,
  email: String,
  profile: {
    firstName: String,
    lastName: String,
    avatar: String,
  },
  addresses: [
    {
      type: String,
      street: String,
      city: String,
    }
  ],
};

// Referencing (for 1:many relationships)
const postSchema = {
  _id: ObjectId,
  authorId: ObjectId,
  title: String,
  content: String,
  tags: [String],
};

Aggregation Pipeline

// Complex aggregation
db.orders.aggregate([
  {
    $match: {
      status: "completed",
      createdAt: { $gte: ISODate("2024-01-01") }
    }
  },
  {
    $lookup: {
      from: "users",
      localField: "userId",
      foreignField: "_id",
      as: "user"
    }
  },
  { $unwind: "$user" },
  {
    $group: {
      _id: { month: { $month: "$createdAt" } },
      totalRevenue: { $sum: "$total" },
      orderCount: { $sum: 1 }
    }
  },
  { $sort: { totalRevenue: -1 } }
]);

Indexes

// Compound index
db.posts.createIndex({ authorId: 1, createdAt: -1 });

// Text index
db.posts.createIndex(
  { title: "text", content: "text" },
  { weights: { title: 10, content: 1 } }
);

// Partial index
db.orders.createIndex(
  { createdAt: 1 },
  { partialFilterExpression: { status: "pending" } }
);

// TTL index (auto-expire)
db.sessions.createIndex({ createdAt: 1 }, { expireAfterSeconds: 3600 });

Redis

Data Structures

# Strings
SET user:1:name "John Doe"
GET user:1:name
SETEX session:abc123 3600 "user_data"
INCR page:home:views

# Hashes
HSET user:1 name "John" email "john@example.com"
HGETALL user:1

# Lists (queues)
LPUSH queue:jobs '{"type":"email"}'
RPOP queue:jobs

# Sets
SADD user:1:roles admin editor
SISMEMBER user:1:roles admin

# Sorted Sets (leaderboards)
ZADD leaderboard 1000 "player1" 1500 "player2"
ZREVRANGE leaderboard 0 9 WITHSCORES

# Streams (event log)
XADD events * type "user_login" user_id "123"
XREAD COUNT 10 STREAMS events 0

Caching Patterns

// Cache-aside pattern
async function getUser(userId: string): Promise<User> {
  const cacheKey = `user:${userId}`;
  const cached = await redis.get(cacheKey);

  if (cached) {
    return JSON.parse(cached);
  }

  const user = await db.users.findById(userId);
  await redis.setex(cacheKey, 3600, JSON.stringify(user));
  return user;
}

// Rate limiting
async function checkRateLimit(userId: string, limit: number, window: number): Promise<boolean> {
  const key = `ratelimit:${userId}`;
  const current = await redis.incr(key);

  if (current === 1) {
    await redis.expire(key, window);
  }

  return current <= limit;
}

// Distributed lock
async function acquireLock(resource: string, ttl: number): Promise<string | null> {
  const lockId = crypto.randomUUID();
  const acquired = await redis.set(
    `lock:${resource}`,
    lockId,
    'NX',
    'EX',
    ttl
  );
  return acquired ? lockId : null;
}

// Release lock with Lua script (atomic operation)
// Use EVALSHA with pre-loaded script for production
const releaseLockScript = `
  if redis.call("get", KEYS[1]) == ARGV[1] then
    return redis.call("del", KEYS[1])
  else
    return 0
  end
`;

Pub/Sub

// Publisher
async function publishEvent(channel: string, event: object): Promise<void> {
  await redis.publish(channel, JSON.stringify(event));
}

// Subscriber
const subscriber = redis.duplicate();
subscriber.subscribe('events');
subscriber.on('message', (channel, message) => {
  const event = JSON.parse(message);
  handleEvent(event);
});

Query Optimization Checklist

PostgreSQL

  • Use EXPLAIN ANALYZE for slow queries
  • Create indexes for WHERE, JOIN, ORDER BY columns
  • Use partial indexes for filtered queries
  • Use connection pooling (pgbouncer)
  • Regular VACUUM and ANALYZE

MongoDB

  • Create compound indexes matching query patterns
  • Use covered queries when possible
  • Avoid large array fields in documents
  • Monitor with explain()

Redis

  • Use appropriate data structures
  • Set TTL on cache keys
  • Use pipelining for bulk operations
  • Monitor memory usage