Claude Code Plugins

Community-maintained marketplace

Feedback
2
0

Expert documentation generation for golden layers. Detects SCD types, documents business rules, metric definitions, aggregation logic, and data quality scoring. Use when documenting golden layer tables.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name aps-doc-golden
description Expert documentation generation for golden layers. Detects SCD types, documents business rules, metric definitions, aggregation logic, and data quality scoring. Use when documenting golden layer tables.

APS Golden Layer Documentation Expert

Specialized skill for generating comprehensive documentation for golden layer tables - the final, analytics-ready data layer.

When to Use This Skill

Use this skill when:

  • Documenting golden layer tables
  • Creating documentation for customer 360 tables
  • Documenting SCD (Slowly Changing Dimension) implementations
  • Generating documentation for metric calculations
  • Documenting aggregation and business rule logic

Example requests:

"Document the golden layer customer master table"
"Create documentation for customer 360 golden table"
"Document SCD Type 2 implementation"
"Generate golden layer documentation following this template: [Confluence URL]"

🚨 MANDATORY: Codebase Access Required

WITHOUT codebase access = NO documentation. Period.

If no codebase access provided:

I cannot create technical documentation without codebase access.

Required:
- Directory path to golden layer workflows
- Access to .dig, .sql, .yml files

Without access, I cannot extract SCD logic, business rules, or table schemas.
Provide path: "Code is in /path/to/golden_layer/"

Before proceeding:

  1. Ask for codebase path if not provided
  2. Use Glob to verify files exist
  3. STOP if cannot read files

Documentation MUST contain:

  • Real SCD columns from actual SQL
  • Actual business rules and CASE statements
  • Real table/column names
  • Working SQL examples from code

NO generic placeholders. Only real, extracted data.

REQUIRED Documentation Template

Follow this EXACT structure (analyzed from production examples):

For Parent Golden Layer Page:

# Golden Layer - Unified Customer Data Platform (CDP)

## Overview
{Brief description of purpose}

**Purpose:**
- {Purpose 1}
- {Purpose 2}

**Key Features:**
- {Feature from actual workflow}
- {Feature from actual workflow}

---

## Architecture

### Layer Structure
{Text diagram showing data flow from sources → staging → enriched → golden}

### Data Sources
{Table with Source, System, Purpose, Priority}

---

## Data Flow

### High-Level Flow
{Text diagram showing:
1. Workflow Trigger
2. Parallel Table Creation
3. Atomic Table Replacement
4. Completion & Notification}

---

## Table Structure

### Attribute Tables
{Table with: Table name, Record count, Purpose, Key Metrics}
{Format: One row per customer (unified_id)}

### Behavior Tables
{Table with: Table name, Record count, Purpose, Granularity}
{Format: Event-level data (many rows per unified_id)}

---

## Workflow Orchestration

### Digdag Workflow: {golden_runner.dig}
{Structure showing:
- _export configuration
- +start
- +create_all_tables (_parallel: true)
- Sub-tasks list
- +complete
- _error}

**Execution Pattern:**
- Parallel Processing details
- Error Handling details

---

## Deployment Pattern

### Atomic Table Replacement (_tmp Pattern)
{4-step pattern:
1. DROP TABLE IF EXISTS _tmp
2. CREATE TABLE _tmp
3. DROP TABLE IF EXISTS production
4. RENAME _tmp to production}

**Benefits:**
{List benefits}

---

## How to Run

### Prerequisites
{List 4 prerequisites}

### Manual Execution
- Via Console
- Via Command Line

### Scheduled Execution
{Recommended schedule with cron example}

**Execution Time:**
{Table showing components and typical duration}

---

## Key Concepts

### 1. Master Data Management (MDM)
{Source Priority with COALESCE pattern}
{Priority Rationale}

### 2. Transaction Metrics Aggregation
{Real aggregation examples from codebase}

### 3. Atomic Blocking
{Related attributes from same source example}

### 4. Unified ID
{Unified ID description and usage}

### 5. Survivorship vs Aggregation
{Table showing pattern, use case, example}

---

## Data Quality & Governance

### Built-In Data Quality Measures
1. Deduplication
2. NULL Handling
3. Data Type Consistency
4. Referential Integrity

### Monitoring & Validation
{Post-Run Validation Queries}

**Data Freshness:**
{Table showing update frequency and latency}

---

## File Structure
{Directory tree showing workflow and SQL files}

---

## Related Documentation
{Links to related pages if applicable}

---

## Summary
{Brief recap of capabilities}

For Golden Attributes Parent Page:

# Golden Attributes

{Parent page links to 5 child pages for each attribute table}

For Individual Golden Attribute Child Pages:

# {Attribute Table Name}

**Purpose**: Comprehensive documentation of all attributes in {table_name}.sql
**Coverage**: {table_name}.sql - {X} Attributes | All Verified Against Current SQL

---

## {table_name}.sql - Complete Attribute Reference ({X} Attributes)

### {Category Name} ({Y} attributes)

{Examples: Identity & Contact, Profile - Name, Profile - Address, Transaction Metrics, Transaction Dates, User Lifecycle, Consent & Engagement, Activity Tracking, Preferences, Platform IDs, Metadata}

#### {Attribute Number}. {attribute_name}

**Location**: `{table_name}.sql:{line_number}`
**Data Type**: {VARCHAR/BIGINT/DOUBLE/ARRAY/TIMESTAMP/etc.}
**Description**: {Clear description from actual implementation}
**Priority**: {source1}(1) > {source2}(2) > {source3}(3) {if applicable}
**Implementation**:

```sql
{Real SQL from actual file - COALESCE, CASE, aggregation, etc.}

Source: {Source table(s) from actual code} Status: ✅ CORRECT / ⚠️ PARTIAL {with notes if applicable}

{Special notes if applicable:}

  • Atomic Survivorship: {Explain if related attributes must come from same source}
  • Calculation: {Explain derived field logic}
  • Filter Logic: {Explain WHERE clauses or exclusions}

{Repeat for all attributes, grouped by category}


{Repeat for each category}


Summary

Total Attributes: {X} Fully Implemented: {Y} ({Z}%) Partially Implemented: {N} ({M}%)

{If applicable:} Pending Attributes (awaiting integration):

  • {List attributes pending future data source integration}

Key Implementation Patterns:

  • Atomic Survivorship: {Real examples from codebase}
  • CTE-based Aggregation: {Real examples from codebase}
  • Multi-source Concatenation: {Real examples from codebase}
  • Single-source Strategy: {Real examples from codebase}

Last Updated: {date} SQL File: golden/queries/{table_name}.sql Total Lines: {line_count}


---

### For Golden Behaviors Child Page:

```markdown
# Golden Behaviors

## Overview
{Brief description of behavior tables}

**Common Pattern:**
- All tables filter for unified_id IS NOT NULL
- Uses _tmp table pattern for atomic replacement
- Source: enriched tables from staging database
- Grain: One record per event

---

## {Behavior Table Number}. {Behavior Table Name}

{Examples: Transaction Behaviors, Email Behaviors, SMS Behaviors, Web Events, Web Pageviews, Marketing Automation Behaviors, etc.}

### Purpose
{Store specific behavior/event type with customer linkage}

### Table Details
- Source: {source_db}.{enriched_source_table}
- Target: {database}.{behavior_table_name}
- Grain: One record per {event type}
- Filter: {Specific metric/event filter if applicable}
- File: {behavior_table_name}.sql

### Description
{Captures specific events/behaviors from actual codebase}

### Key Characteristics
- {List from actual implementation}
- {Exclusion logic if applicable - e.g., cancelled transactions}

### Metrics Tracked {if applicable}
{Table with Metric Name and Description}
{Real metrics from codebase}

### Filter Logic
```sql
WHERE unified_id IS NOT NULL
    {AND additional filters from actual SQL}

{Repeat for each behavior table in actual codebase}


Deployment Pattern

{4-step _tmp pattern with SQL example}

This pattern ensures:

  • Zero downtime during updates
  • Data consistency
  • Atomic replacement of data

Summary Statistics

{Table showing Behavior Type, Metric Count, Source Table}


---

**Template Usage Notes:**
- Read actual .dig workflows and .sql files from golden layer codebase
- **Dynamically discover** all attribute and behavior tables from actual code
- Extract REAL table names, attribute lists, metrics from SQL files
- Document REAL COALESCE patterns, aggregation logic, survivorship rules
- Include working SQL examples with actual line numbers from codebase
- Create parent + child pages based on actual table structure found in code
- Document _tmp pattern for atomic deployment
- **NO customer-specific hardcoding** - discover everything from codebase
- **Follow same template structure** for all customers but with their actual data

## Summary

This skill generates production-ready golden layer documentation by:
- **Dynamically analyzing** actual .dig workflows and .sql files from codebase
- **Auto-discovering** all attribute and behavior tables by reading SQL files
- Following the exact template structure shown above for **any customer**
- Extracting real MDM rules, aggregation patterns, and table structures
- Creating parent + child page documentation based on actual code structure

**Key capability:** Transforms **any** golden layer codebase into professional Confluence documentation with dynamically-generated attribute/behavior catalog following consistent template structure.