Claude Code Plugins

Community-maintained marketplace

Feedback

Specialized AI agent for finite element mesh generation and manipulation using GMSH. Use for 1D/2D/3D mesh generation, geometry processing, quality assessment, optimization, and integration with OrcaFlex, ANSYS, and OpenFOAM.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name gmsh-meshing
description Specialized AI agent for finite element mesh generation and manipulation using GMSH. Use for 1D/2D/3D mesh generation, geometry processing, quality assessment, optimization, and integration with OrcaFlex, ANSYS, and OpenFOAM.
version 1.0.0
updated Thu Jan 02 2025 00:00:00 GMT+0000 (Coordinated Universal Time)
category cad-engineering
triggers mesh generation, finite element mesh, GMSH, panel mesh, mesh quality, mesh optimization, STEP to mesh, STL mesh, mooring discretization, structural mesh

GMSH Meshing Skill

Specialized expertise for finite element mesh generation and manipulation using GMSH with quality assessment and engineering tool integration.

When to Use

  • 1D/2D/3D mesh generation for analysis
  • Geometry import and healing (STEP, IGES, STL)
  • Mesh quality assessment and optimization
  • Panel mesh generation for hydrodynamics
  • Structural mesh for FEM analysis
  • Mooring line discretization
  • Batch mesh processing
  • Integration with OrcaFlex, ANSYS, OpenFOAM

Agent Capabilities

This skill integrates agent capabilities from /agents/gmsh/:

Mesh Generation

Dimension Element Types
1D Beam, line, curve
2D Triangle, quadrilateral, mixed
3D Tetrahedron, hexahedron, prism, pyramid, mixed

Geometry Formats

Import Export
STEP, IGES, STL, BREP, GEO MSH, VTK, CGNS, MED, INP, CDB, STL

Quality Metrics

Metric Description Good Range Critical
Jacobian Element distortion > 0.3 < 0.1
Aspect Ratio Element shape < 5.0 > 10.0
Skewness Element skew < 0.7 > 0.9
Orthogonality Angle quality > 0.3 < 0.1

Optimization Methods

  • Laplacian smoothing
  • Adaptive refinement
  • Remeshing
  • Parallel optimization (up to 100 iterations)

Prerequisites

  • Python 3.10+
  • GMSH Python bindings (pip install gmsh)
  • NumPy, SciPy, PyVista

Configuration

Default Settings

{
  "configuration": {
    "default_algorithm": "frontal-delaunay",
    "default_element_size": 1.0,
    "quality_thresholds": {
      "min_jacobian": 0.3,
      "max_aspect_ratio": 5.0,
      "max_skewness": 0.7
    },
    "performance": {
      "parallel_workers": 4,
      "chunk_size": 1000,
      "memory_limit_gb": 4
    }
  }
}

Python API

Basic Mesh Generation

from digitalmodel.agents.gmsh import GMSHAgent

# Initialize agent
agent = GMSHAgent(config="agent_config.json")

# Generate mesh from geometry
mesh = agent.generate_mesh(
    geometry="platform.step",
    config={
        "algorithm": "frontal-delaunay",
        "element_size": 0.5,
        "element_type": "tetrahedron"
    }
)

# Save mesh
agent.save_mesh(mesh, "platform.msh")

Quality Assessment

# Assess mesh quality
quality = agent.assess_quality(mesh)

print(f"Elements: {quality['element_count']}")
print(f"Min Jacobian: {quality['min_jacobian']:.3f}")
print(f"Avg Aspect Ratio: {quality['avg_aspect_ratio']:.2f}")
print(f"Max Skewness: {quality['max_skewness']:.3f}")

# Check if optimization needed
if quality['min_jacobian'] < 0.3:
    print("Mesh requires optimization")

Mesh Optimization

# Optimize poor quality mesh
optimized = agent.optimize_mesh(
    mesh,
    method="laplacian_smoothing",
    iterations=10,
    quality_targets={
        "min_jacobian": 0.4,
        "max_aspect_ratio": 3.0
    }
)

# Verify improvement
quality_after = agent.assess_quality(optimized)
print(f"Jacobian improved: {quality['min_jacobian']:.3f} -> {quality_after['min_jacobian']:.3f}")

Panel Mesh for Hydrodynamics

# Generate panel mesh for OrcaFlex/OrcaWave
panel_mesh = agent.generate_panel_mesh(
    geometry="hull.step",
    panel_size=2.0,
    refinement_zones=["waterline", "appendages"]
)

# Export to OrcaFlex format
agent.export_to_orcaflex(panel_mesh, "hull_panels.dat")

Structural Mesh for ANSYS

# Generate structural mesh with boundary layers
struct_mesh = agent.generate_mesh(
    geometry="structure.step",
    element_type="hexahedron",
    boundary_layers={
        "walls": {"layers": 5, "growth_rate": 1.2}
    }
)

# Export to ANSYS with named selections
agent.export_to_ansys(
    struct_mesh,
    output="model.cdb",
    named_selections=["inlet", "outlet", "walls"]
)

Batch Processing

from digitalmodel.agents.gmsh.batch import GMSHBatch

# Initialize batch processor
batch = GMSHBatch(parallel=True, max_workers=4)

# Process multiple geometries
results = batch.process_directory(
    input_directory="./geometries",
    output_directory="./meshes",
    config={
        "algorithm": "frontal-delaunay",
        "element_size": {
            "min": 0.1,
            "max": 1.0
        },
        "quality_targets": {
            "min_jacobian": 0.4,
            "max_aspect_ratio": 4.0
        }
    }
)

# Generate quality report
batch.generate_report(results, "mesh_quality_report.html")

Command Line Interface

# Generate mesh from geometry
python run_gmsh_agent.py generate \
    --input geometry.step \
    --output mesh.msh \
    --element-size 0.5

# Batch processing
python run_gmsh_agent.py batch \
    --input-directory ./geometries \
    --output-directory ./meshes \
    --config batch_config.yml \
    --parallel 4

# Quality assessment
python run_gmsh_agent.py assess \
    --mesh mesh.msh \
    --report quality_report.html

# Mesh optimization
python run_gmsh_agent.py optimize \
    --input mesh.msh \
    --output optimized.msh \
    --method laplacian \
    --iterations 10

Integration Examples

OrcaFlex Integration

# Panel mesh for hydrodynamic analysis
panel_mesh = agent.generate_panel_mesh(
    geometry="hull.step",
    panel_size=2.0,
    refinement_zones=["waterline", "appendages"]
)

# Mooring line discretization
mooring_mesh = agent.discretize_mooring(
    length=800.0,
    segments=50,
    target_element_length=16.0
)

# Export to OrcaFlex
agent.export_to_orcaflex(panel_mesh, "hull_panels.dat")

ANSYS Integration

# Structural mesh with named selections
agent.export_to_ansys(
    mesh,
    output="model.cdb",
    format="CDB",
    boundary_conditions=True,
    named_selections=["fixed", "load", "contact"]
)

# Alternative INP format
agent.export_to_ansys(mesh, output="model.inp", format="INP")

Templates

Pre-configured mesh templates:

  • offshore_platform.geo - Platform mesh template
  • mooring_line.geo - Mooring discretization
  • seabed_terrain.geo - Seabed mesh

MCP Tool Integration

Swarm Coordination

// Initialize meshing swarm
mcp__claude-flow__swarm_init { topology: "ring", maxAgents: 4 }

// Spawn specialized agents
mcp__claude-flow__agent_spawn { type: "code-analyzer", name: "mesh-generator" }
mcp__claude-flow__agent_spawn { type: "reviewer", name: "quality-checker" }

Memory Coordination

// Store mesh configuration
mcp__claude-flow__memory_usage {
  action: "store",
  key: "gmsh/mesh/config",
  namespace: "meshing",
  value: JSON.stringify({
    geometry: "hull.step",
    elements: 50000,
    quality: "verified"
  })
}

// Share mesh status with analysis agents
mcp__claude-flow__memory_usage {
  action: "store",
  key: "gmsh/mesh/ready",
  namespace: "shared",
  value: JSON.stringify({
    file: "hull_panels.dat",
    for_tool: "orcaflex",
    panels: 5000
  })
}

Performance

Operation Metric
Mesh Generation >100K elements/second
Quality Assessment <1 second for 1M elements
Optimization ~10 seconds per iteration for 100K elements
Batch Processing Linear scaling with CPU cores

Standard Workflows

Standard Meshing Workflow

  1. Import geometry
  2. Heal geometry defects
  3. Generate mesh
  4. Assess quality
  5. Optimize if needed
  6. Export to desired format

Batch Processing Workflow

  1. Configure batch settings
  2. Process files in parallel
  3. Generate quality reports
  4. Optimize poor meshes
  5. Export all results

Error Handling

Memory Issues with Large Meshes

# Use chunked processing
agent = GMSHAgent(config={
    "performance": {
        "chunk_size": 10000,
        "memory_limit_gb": 2
    }
})

Poor Quality Meshes

# Increase optimization iterations
optimized = agent.optimize_mesh(
    mesh,
    method="remeshing",
    iterations=20,
    quality_targets={
        "min_jacobian": 0.4,
        "max_aspect_ratio": 3.0
    }
)

Related Skills

References


Version History

  • 1.0.0 (2025-01-02): Initial release from agents/gmsh/ configuration