Claude Code Plugins

Community-maintained marketplace

Feedback

agent-orchestration

@vamseeachanta/workspace-hub
0
0

Orchestrate AI agents using Claude Flow, swarm coordination, and multi-agent workflows. Use for complex tasks requiring multiple specialized agents, parallel execution, or coordinated problem-solving.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name agent-orchestration
description Orchestrate AI agents using Claude Flow, swarm coordination, and multi-agent workflows. Use for complex tasks requiring multiple specialized agents, parallel execution, or coordinated problem-solving.

Agent Orchestration Skill

Overview

This skill enables orchestration of multiple AI agents for complex tasks. It covers swarm initialization, agent spawning, task coordination, and multi-agent workflows using Claude Flow and the workspace-hub agent ecosystem.

Agent Categories

Core Agents

Agent Purpose
coder Implementation and coding
reviewer Code review and quality
tester Testing and verification
planner Strategic planning
researcher Information gathering

SPARC Agents

Agent Purpose
specification Requirements analysis
pseudocode Algorithm design
architecture System design
refinement TDD implementation

Specialized Agents

Agent Purpose
backend-dev Backend/API development
ml-developer Machine learning
cicd-engineer CI/CD pipelines
system-architect Architecture design
api-docs API documentation

GitHub Agents

Agent Purpose
pr-manager Pull request management
code-review-swarm Automated code review
issue-tracker Issue management

Swarm Topologies

Hierarchical

Coordinator delegates to specialized workers:

        ┌─────────────────┐
        │   Coordinator   │
        └────────┬────────┘
                 │
    ┌────────────┼────────────┐
    │            │            │
    ▼            ▼            ▼
┌───────┐  ┌───────┐  ┌───────┐
│Worker1│  │Worker2│  │Worker3│
└───────┘  └───────┘  └───────┘

Best for: Complex tasks with clear subtask boundaries

// Initialize hierarchical swarm
mcp__claude-flow__swarm_init({
    topology: "hierarchical",
    maxAgents: 5,
    strategy: "auto"
})

Mesh

Peer-to-peer collaboration:

┌───────┐     ┌───────┐
│Agent A│◄───►│Agent B│
└───┬───┘     └───┬───┘
    │      ╲  ╱   │
    │       ╲╱    │
    │       ╱╲    │
    │      ╱  ╲   │
┌───▼───┐     ┌───▼───┐
│Agent C│◄───►│Agent D│
└───────┘     └───────┘

Best for: Collaborative tasks requiring shared context

mcp__claude-flow__swarm_init({
    topology: "mesh",
    maxAgents: 4
})

Star

Central hub with peripheral agents:

         ┌───────┐
         │Agent A│
         └───┬───┘
             │
┌───────┐  ┌─▼─┐  ┌───────┐
│Agent B├──►Hub◄──┤Agent C│
└───────┘  └─┬─┘  └───────┘
             │
         ┌───▼───┐
         │Agent D│
         └───────┘

Best for: Tasks with central coordination point

mcp__claude-flow__swarm_init({
    topology: "star",
    maxAgents: 6
})

Ring

Sequential processing:

┌───────┐     ┌───────┐
│Agent A│────►│Agent B│
└───┬───┘     └───┬───┘
    ▲             │
    │             ▼
┌───┴───┐     ┌───────┐
│Agent D│◄────│Agent C│
└───────┘     └───────┘

Best for: Pipeline processing, sequential workflows

mcp__claude-flow__swarm_init({
    topology: "ring",
    maxAgents: 4
})

Agent Spawning

Spawn Single Agent

mcp__claude-flow__agent_spawn({
    type: "coder",
    name: "implementation-agent",
    capabilities: ["python", "typescript", "api-development"]
})

Spawn Multiple Agents in Parallel

mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "coder", name: "backend-coder" },
        { type: "tester", name: "test-writer" },
        { type: "reviewer", name: "code-reviewer" }
    ],
    maxConcurrency: 3
})

Agent Types

// Available agent types
const agentTypes = [
    "coordinator",
    "analyst",
    "optimizer",
    "documenter",
    "monitor",
    "specialist",
    "architect",
    "task-orchestrator",
    "code-analyzer",
    "perf-analyzer",
    "api-docs",
    "performance-benchmarker",
    "system-architect",
    "researcher",
    "coder",
    "tester",
    "reviewer"
];

Task Orchestration

Simple Task

mcp__claude-flow__task_orchestrate({
    task: "Implement user authentication with JWT",
    strategy: "sequential",
    priority: "high"
})

Complex Task with Dependencies

mcp__claude-flow__task_orchestrate({
    task: "Build complete API with tests and documentation",
    strategy: "adaptive",
    priority: "high",
    dependencies: [
        "design-api-spec",
        "write-tests",
        "implement-endpoints",
        "create-documentation"
    ]
})

Orchestration Strategies

Strategy Description
parallel Execute independent tasks simultaneously
sequential Execute tasks in order
adaptive Dynamically adjust based on results
balanced Balance load across agents

Workflow Patterns

1. Code Review Swarm

// Initialize review swarm
await mcp__claude-flow__swarm_init({
    topology: "hierarchical",
    maxAgents: 4
});

// Spawn review agents
await mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "reviewer", name: "security-reviewer" },
        { type: "reviewer", name: "performance-reviewer" },
        { type: "reviewer", name: "style-reviewer" }
    ]
});

// Orchestrate review
await mcp__claude-flow__task_orchestrate({
    task: "Review PR #123 for security, performance, and style",
    strategy: "parallel"
});

2. Feature Implementation

// Sequential SPARC workflow
await mcp__claude-flow__swarm_init({ topology: "ring" });

// Phase agents
const phases = [
    { type: "specialist", name: "specification-agent" },
    { type: "specialist", name: "pseudocode-agent" },
    { type: "architect", name: "architecture-agent" },
    { type: "coder", name: "implementation-agent" },
    { type: "tester", name: "testing-agent" }
];

await mcp__claude-flow__agents_spawn_parallel({ agents: phases });

await mcp__claude-flow__task_orchestrate({
    task: "Implement new feature following SPARC methodology",
    strategy: "sequential"
});

3. Research and Analysis

// Mesh for collaborative research
await mcp__claude-flow__swarm_init({ topology: "mesh" });

await mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "researcher", name: "literature-reviewer" },
        { type: "analyst", name: "data-analyst" },
        { type: "documenter", name: "summary-writer" }
    ]
});

await mcp__claude-flow__task_orchestrate({
    task: "Research and analyze best practices for microservices",
    strategy: "adaptive"
});

Monitoring and Status

Check Swarm Status

mcp__claude-flow__swarm_status({ swarmId: "current" })

Monitor Agent Metrics

mcp__claude-flow__agent_metrics({ agentId: "agent-123" })

List Active Agents

mcp__claude-flow__agent_list({ swarmId: "current" })

Get Task Results

mcp__claude-flow__task_results({ taskId: "task-456" })

Memory Management

Store Information

mcp__claude-flow__memory_usage({
    action: "store",
    key: "project-context",
    value: JSON.stringify(projectData),
    namespace: "project-alpha"
})

Retrieve Information

mcp__claude-flow__memory_usage({
    action: "retrieve",
    key: "project-context",
    namespace: "project-alpha"
})

Search Memory

mcp__claude-flow__memory_search({
    pattern: "api-*",
    namespace: "project-alpha",
    limit: 10
})

Performance Optimization

Topology Selection

Choose topology based on task:

Task Type Recommended Topology
Code review Hierarchical
Brainstorming Mesh
Pipeline processing Ring
Centralized coordination Star
Mixed workloads Adaptive

Auto-Optimize

mcp__claude-flow__topology_optimize({ swarmId: "current" })

Load Balancing

mcp__claude-flow__load_balance({
    swarmId: "current",
    tasks: ["task1", "task2", "task3"]
})

Error Handling

Fault Tolerance

mcp__claude-flow__daa_fault_tolerance({
    agentId: "agent-123",
    strategy: "restart"  // or "failover", "ignore"
})

Recovery

// Create snapshot
mcp__claude-flow__state_snapshot({ name: "before-risky-operation" })

// Restore if needed
mcp__claude-flow__context_restore({ snapshotId: "snapshot-id" })

Integration with Claude Code

Using Task Tool

For complex tasks, use Claude Code's Task tool:

Task({
    description: "Complex multi-step analysis",
    prompt: "Analyze codebase and suggest improvements",
    subagent_type: "code-analyzer"
})

Parallel Agent Execution

Launch multiple agents in parallel:

// Single message with multiple Task calls
Task({ subagent_type: "researcher", ... })
Task({ subagent_type: "coder", ... })
Task({ subagent_type: "reviewer", ... })

Best Practices

Agent Selection

  1. Match agent to task: Use specialized agents
  2. Limit concurrency: Don't spawn too many agents
  3. Clear instructions: Provide detailed prompts
  4. Monitor progress: Check status regularly

Swarm Management

  1. Choose appropriate topology: Based on task structure
  2. Set reasonable timeouts: Prevent hung agents
  3. Use memory for context: Share information between agents
  4. Clean up: Destroy swarms when done

Error Handling

  1. Plan for failures: Use fault tolerance
  2. Create snapshots: Before risky operations
  3. Log extensively: For debugging
  4. Graceful degradation: Handle partial failures

Cleanup

Destroy Swarm

mcp__claude-flow__swarm_destroy({ swarmId: "swarm-123" })

Scale Down

mcp__claude-flow__swarm_scale({
    swarmId: "current",
    targetSize: 2
})

Version History

  • 1.0.0 (2024-10-15): Initial release with swarm topologies, agent spawning, task orchestration, memory management, performance optimization