Cloud Neural Network
Train, deploy, and manage neural networks at scale using Flow Nexus cloud-powered distributed computing.
Quick Start
// Train a basic neural network
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "feedforward",
layers: [
{ type: "dense", units: 128, activation: "relu" },
{ type: "dropout", rate: 0.2 },
{ type: "dense", units: 10, activation: "softmax" }
]
},
training: { epochs: 100, batch_size: 32, learning_rate: 0.001 }
},
tier: "small"
})
// Run inference
mcp__flow-nexus__neural_predict({
model_id: "trained_model_id",
input: [[0.5, 0.3, 0.2]]
})
When to Use
- Training neural networks for classification, regression, or generation tasks
- Deploying distributed training across multiple cloud sandboxes
- Running model inference on trained models
- Managing model lifecycle from training to production deployment
- Implementing federated learning or ensemble methods
- Fine-tuning pre-trained models for specific domains
Prerequisites
- Flow Nexus account with active session
- MCP server
flow-nexus configured
- Sufficient rUv credits for training tier selected
Core Concepts
Neural Architectures
| Type |
Use Case |
| Feedforward |
Classification, regression |
| LSTM/RNN |
Time series, NLP sequences |
| Transformer |
Advanced NLP, multimodal |
| CNN |
Computer vision, image processing |
| GAN |
Data generation, augmentation |
| Autoencoder |
Dimensionality reduction, anomaly detection |
Training Tiers
| Tier |
Resources |
Cost |
nano |
Minimal, quick tests |
Low |
mini |
Small models |
Low |
small |
Standard training |
Medium |
medium |
Large models |
High |
large |
Production scale |
Highest |
Distributed Consensus Protocols
- proof-of-learning: Training contribution verification
- byzantine: Fault-tolerant distributed consensus
- raft: Leader-based coordination
- gossip: Decentralized information propagation
MCP Tools Reference
Single-Node Training
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "feedforward", // lstm, gan, autoencoder, transformer
layers: [
{ type: "dense", units: 128, activation: "relu" },
{ type: "dropout", rate: 0.2 },
{ type: "dense", units: 10, activation: "softmax" }
]
},
training: {
epochs: 100,
batch_size: 32,
learning_rate: 0.001,
optimizer: "adam"
},
divergent: {
enabled: false,
pattern: "lateral", // quantum, chaotic, associative, evolutionary
factor: 0.1
}
},
tier: "small", // nano, mini, small, medium, large
user_id: "user_id"
})
Distributed Cluster Training
// Initialize distributed cluster
mcp__flow-nexus__neural_cluster_init({
name: "training-cluster",
architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
topology: "mesh", // mesh, ring, star, hierarchical
consensus: "proof-of-learning",
daaEnabled: true,
wasmOptimization: true
})
// Deploy worker nodes
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_id",
node_type: "worker", // worker, parameter_server, aggregator, validator
model: "base", // base, large, xl, custom
capabilities: ["training", "inference"],
autonomy: 0.8
})
// Connect nodes based on topology
mcp__flow-nexus__neural_cluster_connect({
cluster_id: "cluster_id",
topology: "mesh"
})
// Start distributed training
mcp__flow-nexus__neural_train_distributed({
cluster_id: "cluster_id",
dataset: "dataset_id",
epochs: 10,
batch_size: 32,
learning_rate: 0.001,
optimizer: "adam",
federated: false
})
// Check cluster status
mcp__flow-nexus__neural_cluster_status({ cluster_id: "cluster_id" })
// Terminate when done
mcp__flow-nexus__neural_cluster_terminate({ cluster_id: "cluster_id" })
Inference
// Single-node inference
mcp__flow-nexus__neural_predict({
model_id: "model_id",
input: [[0.5, 0.3, 0.2]],
user_id: "user_id"
})
// Distributed inference
mcp__flow-nexus__neural_predict_distributed({
cluster_id: "cluster_id",
input_data: "[0.5, 0.3, 0.2]",
aggregation: "mean" // mean, majority, weighted, ensemble
})
Template Management
// List templates
mcp__flow-nexus__neural_list_templates({
category: "classification", // timeseries, regression, nlp, vision, anomaly, generative, reinforcement, custom
tier: "free", // free, paid
search: "sentiment",
limit: 20
})
// Deploy template
mcp__flow-nexus__neural_deploy_template({
template_id: "template_id",
custom_config: { epochs: 50 },
user_id: "user_id"
})
// Publish your model as template
mcp__flow-nexus__neural_publish_template({
model_id: "model_id",
name: "Sentiment Analyzer",
description: "LSTM-based sentiment analysis model",
category: "nlp",
price: 0,
user_id: "user_id"
})
// Rate a template
mcp__flow-nexus__neural_rate_template({
template_id: "template_id",
rating: 5,
review: "Excellent model, fast and accurate",
user_id: "user_id"
})
Model Management
// List user models
mcp__flow-nexus__neural_list_models({
user_id: "user_id",
include_public: false
})
// Check training status
mcp__flow-nexus__neural_training_status({ job_id: "job_id" })
// Create validation workflow
mcp__flow-nexus__neural_validation_workflow({
model_id: "model_id",
validation_type: "comprehensive", // performance, accuracy, robustness, comprehensive
user_id: "user_id"
})
// Run performance benchmarks
mcp__flow-nexus__neural_performance_benchmark({
model_id: "model_id",
benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
})
Usage Examples
Example 1: Classification Model Training
// Train a feedforward classifier
const trainingJob = await mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "feedforward",
layers: [
{ type: "dense", units: 256, activation: "relu" },
{ type: "batch_norm" },
{ type: "dropout", rate: 0.3 },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dropout", rate: 0.2 },
{ type: "dense", units: 10, activation: "softmax" }
]
},
training: {
epochs: 100,
batch_size: 64,
learning_rate: 0.001,
optimizer: "adam"
}
},
tier: "small"
});
// Monitor training
const status = await mcp__flow-nexus__neural_training_status({
job_id: trainingJob.job_id
});
console.log(`Epoch: ${status.current_epoch}, Loss: ${status.loss}`);
// Run inference on trained model
const prediction = await mcp__flow-nexus__neural_predict({
model_id: trainingJob.model_id,
input: [[0.1, 0.2, 0.3, 0.4, 0.5]]
});
Example 2: Distributed Transformer Training
// Initialize distributed cluster
const cluster = await mcp__flow-nexus__neural_cluster_init({
name: "transformer-cluster",
architecture: "transformer",
topology: "mesh",
consensus: "proof-of-learning",
daaEnabled: true,
wasmOptimization: true
});
// Deploy 4 worker nodes
for (let i = 0; i < 4; i++) {
await mcp__flow-nexus__neural_node_deploy({
cluster_id: cluster.cluster_id,
node_type: "worker",
model: "large",
capabilities: ["training", "inference"]
});
}
// Deploy parameter server
await mcp__flow-nexus__neural_node_deploy({
cluster_id: cluster.cluster_id,
node_type: "parameter_server",
model: "base"
});
// Connect nodes
await mcp__flow-nexus__neural_cluster_connect({
cluster_id: cluster.cluster_id
});
// Start distributed training
await mcp__flow-nexus__neural_train_distributed({
cluster_id: cluster.cluster_id,
dataset: "large_nlp_dataset",
epochs: 50,
batch_size: 128,
learning_rate: 0.0001,
optimizer: "adam"
});
// Monitor and validate
const clusterStatus = await mcp__flow-nexus__neural_cluster_status({
cluster_id: cluster.cluster_id
});
// Cleanup
await mcp__flow-nexus__neural_cluster_terminate({
cluster_id: cluster.cluster_id
});
Example 3: Using Pre-built Templates
// Find NLP templates
const templates = await mcp__flow-nexus__neural_list_templates({
category: "nlp",
tier: "free",
search: "sentiment"
});
// Deploy the best-rated template
const deployment = await mcp__flow-nexus__neural_deploy_template({
template_id: templates.templates[0].id,
custom_config: {
epochs: 25,
learning_rate: 0.0005
}
});
// Validate model performance
await mcp__flow-nexus__neural_validation_workflow({
model_id: deployment.model_id,
validation_type: "comprehensive"
});
// Benchmark performance
const benchmark = await mcp__flow-nexus__neural_performance_benchmark({
model_id: deployment.model_id,
benchmark_type: "comprehensive"
});
console.log(`Inference latency: ${benchmark.inference_latency_ms}ms`);
Execution Checklist
Best Practices
- Start Small: Begin with
nano or mini tier for testing, scale up for production
- Proper Validation: Always run validation workflow before production deployment
- Hyperparameter Tuning: Use grid search or Bayesian optimization for best results
- Distributed Training: Use for large models; single-node for smaller experiments
- Checkpoint Frequently: Enable checkpointing for long training runs
- Monitor Drift: Implement drift detection for production models
Error Handling
| Error |
Cause |
Solution |
training_failed |
Invalid architecture config |
Verify layer compatibility and types |
cluster_init_failed |
Invalid topology or architecture |
Check supported combinations |
insufficient_credits |
Training tier exceeds balance |
Reduce tier or add credits |
model_not_found |
Invalid model_id |
Use neural_list_models to verify |
node_deploy_failed |
Cluster capacity reached |
Terminate unused nodes |
Metrics & Success Criteria
- Training Convergence: Loss decreasing over epochs
- Validation Accuracy: Target >90% for classification
- Inference Latency: <100ms for production
- Memory Efficiency: <80% resource utilization
- Model Size: Appropriate for deployment target
Integration Points
With Swarms
// Deploy neural agent in swarm
await mcp__flow-nexus__agent_spawn({
type: "analyst",
name: "ML Analyst",
capabilities: ["neural_training", "model_evaluation"]
});
With Workflows
// ML pipeline workflow
await mcp__flow-nexus__workflow_create({
name: "ML Training Pipeline",
steps: [
{ id: "preprocess", action: "data_prep" },
{ id: "train", action: "neural_train", depends: ["preprocess"] },
{ id: "validate", action: "neural_validate", depends: ["train"] },
{ id: "deploy", action: "neural_deploy", depends: ["validate"] }
]
});
Related Skills
References
Version History
- 1.0.0 (2026-01-02): Initial release - converted from flow-nexus-neural agent