Cloud Swarm Orchestration
Deploy, coordinate, and scale multi-agent swarms in Flow Nexus cloud for complex task execution.
Quick Start
// Initialize a swarm with mesh topology
mcp__flow-nexus__swarm_init({
topology: "mesh",
maxAgents: 8,
strategy: "balanced"
})
// Deploy specialized agents
mcp__flow-nexus__agent_spawn({ type: "researcher", name: "Lead Researcher" })
mcp__flow-nexus__agent_spawn({ type: "coder", name: "Implementation Expert" })
// Orchestrate a complex task
mcp__flow-nexus__task_orchestrate({
task: "Build authentication API with JWT tokens",
strategy: "parallel",
priority: "high"
})
When to Use
- Deploying multi-agent systems for complex problem-solving
- Orchestrating parallel task execution across specialized agents
- Scaling AI workloads dynamically based on requirements
- Coordinating distributed workflows with agent collaboration
- Setting up hierarchical or mesh-based agent coordination
Prerequisites
- Flow Nexus account with active session
- MCP server
flow-nexus configured: claude mcp add flow-nexus npx flow-nexus@latest mcp start
- Sufficient rUv credits for agent deployment
Core Concepts
Swarm Topologies
| Topology |
Description |
Best For |
| Hierarchical |
Queen-led coordination with central control |
Complex projects requiring oversight |
| Mesh |
Peer-to-peer distributed network |
Collaborative problem-solving |
| Ring |
Circular coordination pattern |
Sequential processing workflows |
| Star |
Centralized hub-and-spoke |
Single-objective focused tasks |
Agent Types
| Type |
Specialization |
researcher |
Information gathering and analysis |
coder |
Implementation and development |
analyst |
Data processing and pattern recognition |
optimizer |
Performance tuning and efficiency |
coordinator |
Workflow management and orchestration |
Distribution Strategies
- balanced: Even distribution across agent capabilities
- specialized: Focus on specific agent types for task needs
- adaptive: Dynamic adjustment based on workload
MCP Tools Reference
Swarm Initialization
mcp__flow-nexus__swarm_init({
topology: "hierarchical", // mesh, ring, star, hierarchical
maxAgents: 8, // Maximum agents in swarm (1-100)
strategy: "balanced" // balanced, specialized, adaptive
})
// Returns: { swarm_id, topology, status, agents: [] }
Agent Deployment
mcp__flow-nexus__agent_spawn({
type: "researcher", // researcher, coder, analyst, optimizer, coordinator
name: "Agent Name", // Custom identifier
capabilities: ["web_search", "analysis", "summarization"]
})
// Returns: { agent_id, type, name, status, capabilities }
Task Orchestration
mcp__flow-nexus__task_orchestrate({
task: "Task description", // What to accomplish
strategy: "parallel", // parallel, sequential, adaptive
maxAgents: 5, // Agents to assign (1-10)
priority: "high" // low, medium, high, critical
})
// Returns: { task_id, status, assigned_agents, strategy }
Swarm Management
// Check swarm status
mcp__flow-nexus__swarm_status({ swarm_id: "optional" })
// List all swarms
mcp__flow-nexus__swarm_list({ status: "active" }) // active, destroyed, all
// Scale swarm
mcp__flow-nexus__swarm_scale({ target_agents: 10 })
// Destroy swarm
mcp__flow-nexus__swarm_destroy({ swarm_id: "id" })
Template-Based Creation
// List available templates
mcp__flow-nexus__swarm_templates_list({
category: "quickstart", // quickstart, specialized, enterprise, custom, all
includeStore: true
})
// Create from template
mcp__flow-nexus__swarm_create_from_template({
template_id: "template_id",
overrides: { maxAgents: 10, strategy: "adaptive" }
})
Usage Examples
Example 1: Research and Development Swarm
// Step 1: Initialize hierarchical swarm for R&D
const swarm = await mcp__flow-nexus__swarm_init({
topology: "hierarchical",
maxAgents: 6,
strategy: "specialized"
});
// Step 2: Deploy specialized agents
await mcp__flow-nexus__agent_spawn({
type: "researcher",
name: "Market Researcher",
capabilities: ["web_search", "trend_analysis"]
});
await mcp__flow-nexus__agent_spawn({
type: "analyst",
name: "Data Analyst",
capabilities: ["data_processing", "visualization"]
});
await mcp__flow-nexus__agent_spawn({
type: "coder",
name: "Prototype Developer",
capabilities: ["rapid_prototyping", "api_development"]
});
// Step 3: Orchestrate research task
await mcp__flow-nexus__task_orchestrate({
task: "Research competitor authentication solutions and prototype an improved version",
strategy: "sequential",
maxAgents: 3,
priority: "high"
});
// Step 4: Monitor progress
const status = await mcp__flow-nexus__swarm_status();
console.log(`Active agents: ${status.agents.length}, Tasks: ${status.active_tasks}`);
Example 2: Parallel Processing with Mesh Topology
// Initialize mesh for collaborative processing
await mcp__flow-nexus__swarm_init({
topology: "mesh",
maxAgents: 8,
strategy: "balanced"
});
// Deploy multiple coders for parallel work
for (const module of ["auth", "api", "database", "frontend"]) {
await mcp__flow-nexus__agent_spawn({
type: "coder",
name: `${module}-developer`,
capabilities: ["implementation", "testing"]
});
}
// Orchestrate parallel development
await mcp__flow-nexus__task_orchestrate({
task: "Build microservices architecture with 4 independent modules",
strategy: "parallel",
maxAgents: 4,
priority: "critical"
});
// Scale up if needed
await mcp__flow-nexus__swarm_scale({ target_agents: 12 });
Example 3: Using Templates
// List available templates
const templates = await mcp__flow-nexus__swarm_templates_list({
category: "enterprise",
includeStore: true
});
// Deploy from template
await mcp__flow-nexus__swarm_create_from_template({
template_name: "full-stack-development",
overrides: {
maxAgents: 10,
strategy: "adaptive"
}
});
Execution Checklist
Best Practices
- Topology Selection: Choose hierarchical for complex projects, mesh for collaboration, ring for sequential workflows
- Agent Specialization: Deploy agents with capabilities matching task requirements
- Resource Efficiency: Start with fewer agents and scale up as needed
- Task Decomposition: Break complex objectives into manageable sub-tasks
- Monitoring: Regularly check swarm status and agent utilization
- Cleanup: Always destroy swarms when work is complete to free resources
Error Handling
| Error |
Cause |
Solution |
swarm_init_failed |
Invalid topology or max agents |
Verify topology is valid, agents between 1-100 |
agent_spawn_failed |
Invalid type or swarm not active |
Check agent type, ensure swarm is initialized |
insufficient_credits |
Low rUv balance |
Add credits via payment tools |
swarm_not_found |
Invalid swarm_id |
Use swarm_list to get valid IDs |
Metrics & Success Criteria
- Agent Utilization: Target >80% utilization during active tasks
- Task Completion: All orchestrated tasks complete successfully
- Response Time: Swarm initialization <5 seconds
- Scaling Efficiency: Scale operations complete <10 seconds
Integration Points
With Workflows
// Create workflow that uses swarm
await mcp__flow-nexus__workflow_create({
name: "Swarm-Powered Pipeline",
steps: [
{ id: "init", action: "swarm_init", config: { topology: "mesh" } },
{ id: "deploy", action: "agent_spawn", depends: ["init"] },
{ id: "execute", action: "task_orchestrate", depends: ["deploy"] }
]
});
With Sandboxes
// Deploy agents with sandbox execution capabilities
await mcp__flow-nexus__agent_spawn({
type: "coder",
name: "Sandbox Developer",
capabilities: ["sandbox_execution", "code_testing"]
});
Related Skills
References
Version History
- 1.0.0 (2026-01-02): Initial release - converted from flow-nexus-swarm agent