Claude Code Plugins

Community-maintained marketplace

Feedback

AI swarm orchestration and management in Flow Nexus cloud. Use for deploying, coordinating, and scaling multi-agent swarms for complex task execution.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name cloud-swarm
description AI swarm orchestration and management in Flow Nexus cloud. Use for deploying, coordinating, and scaling multi-agent swarms for complex task execution.
version 1.0.0
category cloud
type skill
capabilities swarm_initialization, agent_deployment, task_orchestration, swarm_scaling, performance_monitoring, lifecycle_management
tools mcp__flow-nexus__swarm_init, mcp__flow-nexus__agent_spawn, mcp__flow-nexus__task_orchestrate, mcp__flow-nexus__swarm_status, mcp__flow-nexus__swarm_scale, mcp__flow-nexus__swarm_destroy, mcp__flow-nexus__swarm_list, mcp__flow-nexus__swarm_templates_list, mcp__flow-nexus__swarm_create_from_template
related_skills cloud-workflow, cloud-neural, cloud-sandbox

Cloud Swarm Orchestration

Deploy, coordinate, and scale multi-agent swarms in Flow Nexus cloud for complex task execution.

Quick Start

// Initialize a swarm with mesh topology
mcp__flow-nexus__swarm_init({
  topology: "mesh",
  maxAgents: 8,
  strategy: "balanced"
})

// Deploy specialized agents
mcp__flow-nexus__agent_spawn({ type: "researcher", name: "Lead Researcher" })
mcp__flow-nexus__agent_spawn({ type: "coder", name: "Implementation Expert" })

// Orchestrate a complex task
mcp__flow-nexus__task_orchestrate({
  task: "Build authentication API with JWT tokens",
  strategy: "parallel",
  priority: "high"
})

When to Use

  • Deploying multi-agent systems for complex problem-solving
  • Orchestrating parallel task execution across specialized agents
  • Scaling AI workloads dynamically based on requirements
  • Coordinating distributed workflows with agent collaboration
  • Setting up hierarchical or mesh-based agent coordination

Prerequisites

  • Flow Nexus account with active session
  • MCP server flow-nexus configured: claude mcp add flow-nexus npx flow-nexus@latest mcp start
  • Sufficient rUv credits for agent deployment

Core Concepts

Swarm Topologies

Topology Description Best For
Hierarchical Queen-led coordination with central control Complex projects requiring oversight
Mesh Peer-to-peer distributed network Collaborative problem-solving
Ring Circular coordination pattern Sequential processing workflows
Star Centralized hub-and-spoke Single-objective focused tasks

Agent Types

Type Specialization
researcher Information gathering and analysis
coder Implementation and development
analyst Data processing and pattern recognition
optimizer Performance tuning and efficiency
coordinator Workflow management and orchestration

Distribution Strategies

  • balanced: Even distribution across agent capabilities
  • specialized: Focus on specific agent types for task needs
  • adaptive: Dynamic adjustment based on workload

MCP Tools Reference

Swarm Initialization

mcp__flow-nexus__swarm_init({
  topology: "hierarchical",  // mesh, ring, star, hierarchical
  maxAgents: 8,              // Maximum agents in swarm (1-100)
  strategy: "balanced"       // balanced, specialized, adaptive
})
// Returns: { swarm_id, topology, status, agents: [] }

Agent Deployment

mcp__flow-nexus__agent_spawn({
  type: "researcher",        // researcher, coder, analyst, optimizer, coordinator
  name: "Agent Name",        // Custom identifier
  capabilities: ["web_search", "analysis", "summarization"]
})
// Returns: { agent_id, type, name, status, capabilities }

Task Orchestration

mcp__flow-nexus__task_orchestrate({
  task: "Task description",  // What to accomplish
  strategy: "parallel",      // parallel, sequential, adaptive
  maxAgents: 5,              // Agents to assign (1-10)
  priority: "high"           // low, medium, high, critical
})
// Returns: { task_id, status, assigned_agents, strategy }

Swarm Management

// Check swarm status
mcp__flow-nexus__swarm_status({ swarm_id: "optional" })

// List all swarms
mcp__flow-nexus__swarm_list({ status: "active" })  // active, destroyed, all

// Scale swarm
mcp__flow-nexus__swarm_scale({ target_agents: 10 })

// Destroy swarm
mcp__flow-nexus__swarm_destroy({ swarm_id: "id" })

Template-Based Creation

// List available templates
mcp__flow-nexus__swarm_templates_list({
  category: "quickstart",    // quickstart, specialized, enterprise, custom, all
  includeStore: true
})

// Create from template
mcp__flow-nexus__swarm_create_from_template({
  template_id: "template_id",
  overrides: { maxAgents: 10, strategy: "adaptive" }
})

Usage Examples

Example 1: Research and Development Swarm

// Step 1: Initialize hierarchical swarm for R&D
const swarm = await mcp__flow-nexus__swarm_init({
  topology: "hierarchical",
  maxAgents: 6,
  strategy: "specialized"
});

// Step 2: Deploy specialized agents
await mcp__flow-nexus__agent_spawn({
  type: "researcher",
  name: "Market Researcher",
  capabilities: ["web_search", "trend_analysis"]
});

await mcp__flow-nexus__agent_spawn({
  type: "analyst",
  name: "Data Analyst",
  capabilities: ["data_processing", "visualization"]
});

await mcp__flow-nexus__agent_spawn({
  type: "coder",
  name: "Prototype Developer",
  capabilities: ["rapid_prototyping", "api_development"]
});

// Step 3: Orchestrate research task
await mcp__flow-nexus__task_orchestrate({
  task: "Research competitor authentication solutions and prototype an improved version",
  strategy: "sequential",
  maxAgents: 3,
  priority: "high"
});

// Step 4: Monitor progress
const status = await mcp__flow-nexus__swarm_status();
console.log(`Active agents: ${status.agents.length}, Tasks: ${status.active_tasks}`);

Example 2: Parallel Processing with Mesh Topology

// Initialize mesh for collaborative processing
await mcp__flow-nexus__swarm_init({
  topology: "mesh",
  maxAgents: 8,
  strategy: "balanced"
});

// Deploy multiple coders for parallel work
for (const module of ["auth", "api", "database", "frontend"]) {
  await mcp__flow-nexus__agent_spawn({
    type: "coder",
    name: `${module}-developer`,
    capabilities: ["implementation", "testing"]
  });
}

// Orchestrate parallel development
await mcp__flow-nexus__task_orchestrate({
  task: "Build microservices architecture with 4 independent modules",
  strategy: "parallel",
  maxAgents: 4,
  priority: "critical"
});

// Scale up if needed
await mcp__flow-nexus__swarm_scale({ target_agents: 12 });

Example 3: Using Templates

// List available templates
const templates = await mcp__flow-nexus__swarm_templates_list({
  category: "enterprise",
  includeStore: true
});

// Deploy from template
await mcp__flow-nexus__swarm_create_from_template({
  template_name: "full-stack-development",
  overrides: {
    maxAgents: 10,
    strategy: "adaptive"
  }
});

Execution Checklist

  • Verify Flow Nexus authentication status
  • Choose appropriate topology for task requirements
  • Initialize swarm with correct parameters
  • Deploy agents with relevant capabilities
  • Orchestrate tasks with suitable strategy
  • Monitor swarm performance and agent utilization
  • Scale swarm based on workload
  • Clean up: destroy swarm when complete

Best Practices

  1. Topology Selection: Choose hierarchical for complex projects, mesh for collaboration, ring for sequential workflows
  2. Agent Specialization: Deploy agents with capabilities matching task requirements
  3. Resource Efficiency: Start with fewer agents and scale up as needed
  4. Task Decomposition: Break complex objectives into manageable sub-tasks
  5. Monitoring: Regularly check swarm status and agent utilization
  6. Cleanup: Always destroy swarms when work is complete to free resources

Error Handling

Error Cause Solution
swarm_init_failed Invalid topology or max agents Verify topology is valid, agents between 1-100
agent_spawn_failed Invalid type or swarm not active Check agent type, ensure swarm is initialized
insufficient_credits Low rUv balance Add credits via payment tools
swarm_not_found Invalid swarm_id Use swarm_list to get valid IDs

Metrics & Success Criteria

  • Agent Utilization: Target >80% utilization during active tasks
  • Task Completion: All orchestrated tasks complete successfully
  • Response Time: Swarm initialization <5 seconds
  • Scaling Efficiency: Scale operations complete <10 seconds

Integration Points

With Workflows

// Create workflow that uses swarm
await mcp__flow-nexus__workflow_create({
  name: "Swarm-Powered Pipeline",
  steps: [
    { id: "init", action: "swarm_init", config: { topology: "mesh" } },
    { id: "deploy", action: "agent_spawn", depends: ["init"] },
    { id: "execute", action: "task_orchestrate", depends: ["deploy"] }
  ]
});

With Sandboxes

// Deploy agents with sandbox execution capabilities
await mcp__flow-nexus__agent_spawn({
  type: "coder",
  name: "Sandbox Developer",
  capabilities: ["sandbox_execution", "code_testing"]
});

Related Skills

References

Version History

  • 1.0.0 (2026-01-02): Initial release - converted from flow-nexus-swarm agent