Claude Code Plugins

Community-maintained marketplace

Feedback

Event-driven workflow automation in Flow Nexus cloud. Use for creating, executing, and managing complex automated workflows with message queue processing and intelligent agent coordination.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name cloud-workflow
description Event-driven workflow automation in Flow Nexus cloud. Use for creating, executing, and managing complex automated workflows with message queue processing and intelligent agent coordination.
version 1.0.0
category cloud
type skill
capabilities workflow_creation, workflow_execution, agent_assignment, queue_management, audit_tracking, event_triggers
tools mcp__flow-nexus__workflow_create, mcp__flow-nexus__workflow_execute, mcp__flow-nexus__workflow_status, mcp__flow-nexus__workflow_list, mcp__flow-nexus__workflow_agent_assign, mcp__flow-nexus__workflow_queue_status, mcp__flow-nexus__workflow_audit_trail
related_skills cloud-swarm, cloud-sandbox, cloud-neural

Cloud Workflow

Design and orchestrate event-driven automation workflows with intelligent agent coordination and message queue processing.

Quick Start

// Create a CI/CD workflow
const workflow = await mcp__flow-nexus__workflow_create({
  name: "CI/CD Pipeline",
  description: "Automated testing and deployment",
  steps: [
    { id: "test", action: "run_tests", agent: "tester" },
    { id: "build", action: "build_app", agent: "builder" },
    { id: "deploy", action: "deploy_prod", agent: "deployer" }
  ],
  triggers: ["push_to_main", "manual_trigger"]
});

// Execute the workflow
await mcp__flow-nexus__workflow_execute({
  workflow_id: workflow.workflow_id,
  input_data: { branch: "main" },
  async: true
});

When to Use

  • Automating CI/CD pipelines with multiple stages
  • Orchestrating data processing and ETL workflows
  • Creating event-driven automation for business processes
  • Managing multi-stage review and approval workflows
  • Scheduling recurring automated tasks
  • Coordinating complex multi-agent collaboration

Prerequisites

  • Flow Nexus account with active session
  • MCP server flow-nexus configured
  • Sufficient rUv credits for workflow execution

Core Concepts

Workflow Patterns

Pattern Description Use Case
CI/CD Pipeline Test, build, deploy sequence Software deployment
Data Processing ETL with validation steps Data engineering
Multi-Stage Review Automated analysis + approval Code review
Event-Driven Reactive to external events Webhooks, notifications
Scheduled Time-based execution Recurring tasks
Conditional Branching logic and decisions Complex business rules

Execution Strategies

  • Sequential: Steps run one after another
  • Parallel: Independent steps run simultaneously
  • Conditional: Steps execute based on conditions

Agent Assignment

Workflows can automatically assign optimal agents to tasks using:

  • Explicit Assignment: Specify agent type per step
  • Vector Similarity: AI-powered matching based on task requirements

MCP Tools Reference

Workflow Creation

mcp__flow-nexus__workflow_create({
  name: "Workflow Name",
  description: "Workflow description",
  steps: [
    {
      id: "step1",
      action: "action_name",
      agent: "agent_type",     // Optional: auto-assigned if not specified
      config: {}               // Step-specific configuration
    },
    {
      id: "step2",
      action: "action_name",
      depends: ["step1"]       // Dependencies on other steps
    }
  ],
  triggers: ["trigger1", "trigger2"],  // Event triggers
  priority: 5,                 // Priority 0-10
  metadata: {}                 // Additional metadata
})
// Returns: { workflow_id, name, status, created_at }

Workflow Execution

mcp__flow-nexus__workflow_execute({
  workflow_id: "workflow_id",
  input_data: {                // Input data for execution
    key: "value"
  },
  async: true                  // Execute asynchronously via queue
})
// Returns: { execution_id, status, started_at }

Status and Monitoring

// Get workflow status
mcp__flow-nexus__workflow_status({
  workflow_id: "workflow_id",
  execution_id: "execution_id",  // Optional: specific execution
  include_metrics: true
})
// Returns: { status, progress, metrics, step_results }

// List all workflows
mcp__flow-nexus__workflow_list({
  status: "active",            // Filter by status
  limit: 10,
  offset: 0
})

// Check message queue status
mcp__flow-nexus__workflow_queue_status({
  queue_name: "queue_name",    // Optional: specific queue
  include_messages: true
})

Agent Assignment

mcp__flow-nexus__workflow_agent_assign({
  task_id: "task_id",
  agent_type: "coder",         // Preferred agent type
  use_vector_similarity: true  // Use AI matching
})
// Returns: { agent_id, type, match_score }

Audit Trail

mcp__flow-nexus__workflow_audit_trail({
  workflow_id: "workflow_id",
  start_time: "2026-01-01T00:00:00Z",
  limit: 50
})
// Returns: { events: [{ timestamp, action, user, details }] }

Usage Examples

Example 1: CI/CD Pipeline

// Create comprehensive CI/CD workflow
const cicdWorkflow = await mcp__flow-nexus__workflow_create({
  name: "Full CI/CD Pipeline",
  description: "Complete testing, building, and deployment workflow",
  steps: [
    {
      id: "lint",
      action: "run_linter",
      agent: "code-analyzer",
      config: { strict: true }
    },
    {
      id: "test",
      action: "run_tests",
      agent: "tester",
      config: { coverage_threshold: 80 },
      depends: ["lint"]
    },
    {
      id: "security_scan",
      action: "security_check",
      agent: "security-analyzer",
      depends: ["lint"]
    },
    {
      id: "build",
      action: "build_app",
      agent: "builder",
      depends: ["test", "security_scan"]
    },
    {
      id: "deploy_staging",
      action: "deploy",
      agent: "deployer",
      config: { environment: "staging" },
      depends: ["build"]
    },
    {
      id: "integration_tests",
      action: "run_integration_tests",
      agent: "tester",
      depends: ["deploy_staging"]
    },
    {
      id: "deploy_prod",
      action: "deploy",
      agent: "deployer",
      config: { environment: "production" },
      depends: ["integration_tests"]
    }
  ],
  triggers: ["push_to_main", "release_tag"],
  priority: 8
});

// Execute on push
await mcp__flow-nexus__workflow_execute({
  workflow_id: cicdWorkflow.workflow_id,
  input_data: {
    branch: "main",
    commit: "abc123",
    author: "developer@example.com"
  },
  async: true
});

// Monitor progress
const status = await mcp__flow-nexus__workflow_status({
  workflow_id: cicdWorkflow.workflow_id,
  include_metrics: true
});

console.log(`Progress: ${status.progress}%, Current step: ${status.current_step}`);

Example 2: Data Processing Pipeline

// ETL workflow with validation
const etlWorkflow = await mcp__flow-nexus__workflow_create({
  name: "Data ETL Pipeline",
  description: "Extract, transform, and load data with validation",
  steps: [
    {
      id: "extract",
      action: "extract_data",
      agent: "data-extractor",
      config: { source: "s3://bucket/raw-data" }
    },
    {
      id: "validate",
      action: "validate_schema",
      agent: "data-validator",
      depends: ["extract"]
    },
    {
      id: "transform",
      action: "transform_data",
      agent: "data-transformer",
      config: { rules: ["normalize", "dedupe", "enrich"] },
      depends: ["validate"]
    },
    {
      id: "quality_check",
      action: "run_quality_checks",
      agent: "data-analyst",
      depends: ["transform"]
    },
    {
      id: "load",
      action: "load_to_warehouse",
      agent: "data-loader",
      config: { target: "postgres://warehouse" },
      depends: ["quality_check"]
    }
  ],
  triggers: ["schedule:0 2 * * *", "manual_trigger"]  // Daily at 2 AM
});

// Manual execution
await mcp__flow-nexus__workflow_execute({
  workflow_id: etlWorkflow.workflow_id,
  input_data: { date: "2026-01-02" }
});

Example 3: Multi-Stage Code Review

// Automated code review workflow
const reviewWorkflow = await mcp__flow-nexus__workflow_create({
  name: "Automated Code Review",
  description: "Multi-stage code analysis and review",
  steps: [
    {
      id: "static_analysis",
      action: "run_static_analysis",
      agent: "code-analyzer"
    },
    {
      id: "security_review",
      action: "security_scan",
      agent: "security-reviewer",
      depends: ["static_analysis"]
    },
    {
      id: "performance_review",
      action: "analyze_performance",
      agent: "perf-analyzer",
      depends: ["static_analysis"]
    },
    {
      id: "ai_review",
      action: "ai_code_review",
      agent: "ai-reviewer",
      depends: ["static_analysis"]
    },
    {
      id: "compile_report",
      action: "generate_report",
      agent: "report-generator",
      depends: ["security_review", "performance_review", "ai_review"]
    }
  ],
  triggers: ["pull_request_opened", "pull_request_updated"]
});

// Assign optimal agent dynamically
await mcp__flow-nexus__workflow_agent_assign({
  task_id: "security_review_123",
  use_vector_similarity: true
});

Example 4: Queue Management

// Check queue status
const queueStatus = await mcp__flow-nexus__workflow_queue_status({
  include_messages: true
});

console.log(`Pending messages: ${queueStatus.pending}`);
console.log(`Processing: ${queueStatus.processing}`);

// Review audit trail
const audit = await mcp__flow-nexus__workflow_audit_trail({
  workflow_id: "workflow_id",
  limit: 100
});

for (const event of audit.events) {
  console.log(`${event.timestamp}: ${event.action} by ${event.user}`);
}

Execution Checklist

  • Define workflow steps and dependencies
  • Assign or auto-assign agents to steps
  • Configure triggers (events, schedules)
  • Set workflow priority
  • Create the workflow
  • Execute with appropriate input data
  • Monitor progress and step status
  • Review audit trail for compliance
  • Clean up or archive completed workflows

Best Practices

  1. Step Granularity: Break complex tasks into atomic steps for better monitoring
  2. Dependency Chains: Carefully plan dependencies to maximize parallelism
  3. Error Handling: Include retry logic and fallback steps
  4. Async Execution: Use async mode for long-running workflows
  5. Agent Matching: Leverage vector similarity for optimal agent assignment
  6. Audit Compliance: Regularly review audit trails for security

Error Handling

Error Cause Solution
workflow_create_failed Invalid step configuration Verify step IDs and dependencies
execution_failed Step error or timeout Check step logs, increase timeout
agent_assignment_failed No suitable agent available Specify alternative agent type
queue_overflow Too many pending messages Scale workers or reduce rate
circular_dependency Steps reference each other Review dependency graph

Metrics & Success Criteria

  • Workflow Completion Rate: Target >95%
  • Average Execution Time: Track per workflow type
  • Queue Latency: <10 seconds for async jobs
  • Agent Utilization: >80% during active workflows
  • Error Rate: <5% per workflow type

Integration Points

With Swarms

// Swarm-powered workflow
const swarm = await mcp__flow-nexus__swarm_init({ topology: "mesh" });

await mcp__flow-nexus__workflow_create({
  name: "Swarm Workflow",
  steps: [
    { id: "task", action: "swarm_execute", config: { swarm_id: swarm.swarm_id } }
  ]
});

With Sandboxes

// Sandbox execution in workflow
await mcp__flow-nexus__workflow_create({
  name: "Sandbox Pipeline",
  steps: [
    { id: "create", action: "sandbox_create", config: { template: "node" } },
    { id: "test", action: "sandbox_execute", depends: ["create"] },
    { id: "cleanup", action: "sandbox_delete", depends: ["test"] }
  ]
});

Related Skills

References

Version History

  • 1.0.0 (2026-01-02): Initial release - converted from flow-nexus-workflow agent