Claude Code Plugins

Community-maintained marketplace

Feedback

engineering-report-generator

@vamseeachanta/workspace-hub
0
0

Generate engineering analysis reports with interactive Plotly visualizations, standard report sections, and HTML export. Use for creating dashboards, analysis summaries, and technical documentation with charts.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name engineering-report-generator
description Generate engineering analysis reports with interactive Plotly visualizations, standard report sections, and HTML export. Use for creating dashboards, analysis summaries, and technical documentation with charts.
version 1.1.0
category development
related_skills data-pipeline-processor, yaml-workflow-executor, parallel-file-processor

Engineering Report Generator

Version: 1.1.0 Category: Development Last Updated: 2026-01-02

Generate professional engineering analysis reports with interactive visualizations using Plotly and responsive HTML export.

Quick Start

import plotly.express as px
import pandas as pd
from pathlib import Path
from datetime import datetime

# Load data
df = pd.read_csv("../data/processed/results.csv")

# Create visualization
fig = px.line(df, x="date", y="value", title="Analysis Results")

# Generate HTML report
html = f"""<!DOCTYPE html>
<html>
<head><title>Engineering Report</title></head>
<body>
<h1>Analysis Report - {datetime.now().strftime('%Y-%m-%d')}</h1>
{fig.to_html(full_html=False, include_plotlyjs="cdn")}
</body>
</html>"""

Path("../reports/analysis.html").write_text(html)
print("Report generated: reports/analysis.html")

When to Use

  • Creating analysis reports with charts and visualizations
  • Building interactive dashboards from CSV/data sources
  • Generating technical documentation with plots
  • Producing client-deliverable HTML reports
  • Summarizing engineering calculations with graphics

Report Structure

Standard Sections

  1. Header - Title, date, project info, version
  2. Executive Summary - Key findings and metrics at a glance
  3. Methodology - Analysis approach and assumptions
  4. Results - Data tables and interactive visualizations
  5. Discussion - Interpretation of results
  6. Conclusions - Summary and recommendations
  7. Appendix - Supporting data, references

Implementation Pattern

Basic Report Generation

import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
from pathlib import Path
from datetime import datetime

def generate_report(
    data_path: str,
    output_path: str,
    title: str,
    sections: dict
) -> str:
    """
    Generate HTML report with interactive visualizations.

    Args:
        data_path: Path to CSV data file (relative)
        output_path: Output HTML file path
        title: Report title
        sections: Dict of section content

    Returns:
        Path to generated report
    """
    # Load data
    df = pd.read_csv(data_path)

    # Create figures
    figures = create_visualizations(df, sections.get('charts', []))

    # Build HTML
    html = build_html_report(title, sections, figures)

    # Save
    Path(output_path).parent.mkdir(parents=True, exist_ok=True)
    with open(output_path, 'w') as f:
        f.write(html)

    return output_path

Visualization Patterns

def create_visualizations(df: pd.DataFrame, chart_configs: list) -> list:
    """Create Plotly figures from configuration."""
    figures = []

    for config in chart_configs:
        chart_type = config.get('type', 'line')

        if chart_type == 'line':
            fig = px.line(
                df,
                x=config['x'],
                y=config['y'],
                color=config.get('color'),
                title=config.get('title', '')
            )
        elif chart_type == 'scatter':
            fig = px.scatter(
                df,
                x=config['x'],
                y=config['y'],
                color=config.get('color'),
                size=config.get('size'),
                title=config.get('title', '')
            )
        elif chart_type == 'bar':
            fig = px.bar(
                df,
                x=config['x'],
                y=config['y'],
                color=config.get('color'),
                title=config.get('title', '')
            )
        elif chart_type == 'heatmap':
            fig = px.imshow(
                df.pivot(
                    index=config['y'],
                    columns=config['x'],
                    values=config['values']
                ),
                title=config.get('title', '')
            )
        elif chart_type == 'polar':
            fig = px.line_polar(
                df,
                r=config['r'],
                theta=config['theta'],
                title=config.get('title', '')
            )

        # Apply standard styling
        fig.update_layout(
            template='plotly_white',
            font=dict(size=12),
            margin=dict(l=50, r=50, t=50, b=50)
        )

        figures.append(fig)

    return figures

HTML Template

def build_html_report(title: str, sections: dict, figures: list) -> str:
    """Build complete HTML report."""

    # Convert figures to HTML
    chart_html = '\n'.join([
        f'<div class="chart-container">{fig.to_html(full_html=False, include_plotlyjs="cdn")}</div>'
        for fig in figures
    ])

    html = f'''<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>{title}</title>
    <style>
        :root {{
            --primary-color: #2c3e50;
            --secondary-color: #3498db;
            --background-color: #f5f6fa;
            --card-background: #ffffff;
            --text-color: #2c3e50;
        }}

        body {{
            font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, sans-serif;
            max-width: 1200px;
            margin: 0 auto;
            padding: 20px;
            background-color: var(--background-color);
            color: var(--text-color);
            line-height: 1.6;
        }}

        .report-header {{
            background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
            color: white;
            padding: 40px;
            border-radius: 10px;
            margin-bottom: 30px;
        }}

        .report-header h1 {{
            margin: 0 0 10px 0;
            font-size: 2em;
        }}

        .section {{
            background: var(--card-background);
            padding: 30px;
            border-radius: 10px;
            margin-bottom: 20px;
            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        }}

        .section h2 {{
            color: var(--primary-color);
            border-bottom: 2px solid var(--secondary-color);
            padding-bottom: 10px;
            margin-top: 0;
        }}

        .chart-container {{
            margin: 20px 0;
        }}

        .summary-grid {{
            display: grid;
            grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
            gap: 20px;
            margin: 20px 0;
        }}

        .metric-card {{
            background: var(--background-color);
            padding: 20px;
            border-radius: 8px;
            text-align: center;
        }}

        .metric-value {{
            font-size: 2em;
            font-weight: bold;
            color: var(--secondary-color);
        }}

        .metric-label {{
            font-size: 0.9em;
            color: #666;
        }}

        table {{
            width: 100%;
            border-collapse: collapse;
            margin: 20px 0;
        }}

        th, td {{
            padding: 12px;
            text-align: left;
            border-bottom: 1px solid #ddd;
        }}

        th {{
            background: var(--primary-color);
            color: white;
        }}

        @media (max-width: 768px) {{
            body {{ padding: 10px; }}
            .report-header {{ padding: 20px; }}
            .section {{ padding: 15px; }}
        }}
    </style>
</head>
<body>
    <div class="report-header">
        <h1>{title}</h1>
        <div class="report-meta">
            <span>Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}</span>
            {f'<span> | Project: {sections.get("project", "")}</span>' if sections.get("project") else ''}
        </div>
    </div>

    {f'<div class="section"><h2>Executive Summary</h2>{sections.get("summary", "")}</div>' if sections.get("summary") else ''}

    {f'<div class="section"><h2>Methodology</h2>{sections.get("methodology", "")}</div>' if sections.get("methodology") else ''}

    <div class="section">
        <h2>Results</h2>
        {chart_html}
        {sections.get("results", "")}
    </div>

    {f'<div class="section"><h2>Discussion</h2>{sections.get("discussion", "")}</div>' if sections.get("discussion") else ''}

    {f'<div class="section"><h2>Conclusions</h2>{sections.get("conclusions", "")}</div>' if sections.get("conclusions") else ''}

    {f'<div class="section"><h2>Appendix</h2>{sections.get("appendix", "")}</div>' if sections.get("appendix") else ''}

    <footer style="text-align: center; padding: 20px; color: #666; font-size: 0.9em;">
        Report generated using Engineering Report Generator
    </footer>
</body>
</html>'''

    return html

Usage Examples

Example 1: Production Analysis Report

# Configuration
report_config = {
    'title': 'Monthly Production Analysis',
    'project': 'Field A Development',
    'summary': '''
        <div class="summary-grid">
            <div class="metric-card">
                <div class="metric-value">125,000</div>
                <div class="metric-label">Total Oil (bbl)</div>
            </div>
            <div class="metric-card">
                <div class="metric-value">98.5%</div>
                <div class="metric-label">Uptime</div>
            </div>
        </div>
    ''',
    'charts': [
        {'type': 'line', 'x': 'date', 'y': 'production', 'title': 'Daily Production'},
        {'type': 'bar', 'x': 'well', 'y': 'cumulative', 'title': 'Well Performance'}
    ]
}

# Generate
generate_report(
    data_path='../data/processed/production.csv',
    output_path='../reports/production_report.html',
    **report_config
)

Example 2: Structural Analysis Report

report_config = {
    'title': 'Structural Analysis Results',
    'methodology': '<p>Analysis performed per DNV-RP-C201 using finite element method.</p>',
    'charts': [
        {'type': 'heatmap', 'x': 'x_coord', 'y': 'y_coord', 'values': 'stress', 'title': 'Stress Distribution'},
        {'type': 'scatter', 'x': 'load', 'y': 'displacement', 'title': 'Load-Displacement Curve'}
    ],
    'conclusions': '<p>All structural elements satisfy design criteria with safety factor > 1.5</p>'
}

Example 3: Multi-Panel Dashboard

from plotly.subplots import make_subplots

def create_dashboard(df: pd.DataFrame, output_path: str):
    """Create multi-panel analysis dashboard."""
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=('Trend', 'Distribution', 'Comparison', 'Correlation')
    )

    # Add traces to each panel
    fig.add_trace(go.Scatter(x=df['date'], y=df['value'], mode='lines'), row=1, col=1)
    fig.add_trace(go.Histogram(x=df['value']), row=1, col=2)
    fig.add_trace(go.Bar(x=df['category'], y=df['count']), row=2, col=1)
    fig.add_trace(go.Scatter(x=df['x'], y=df['y'], mode='markers'), row=2, col=2)

    fig.update_layout(height=800, title_text="Analysis Dashboard")
    fig.write_html(output_path)

    return output_path

Best Practices

Do

  1. Use relative paths from report location for data
  2. Include interactive plots only (Plotly, Bokeh, Altair)
  3. Apply consistent color schemes across charts
  4. Add clear axis labels and titles
  5. Include hover data for detailed values
  6. Make reports responsive (mobile-friendly)

Don't

  1. Export static matplotlib PNG/SVG images
  2. Use absolute file paths
  3. Create overly complex visualizations
  4. Skip executive summaries
  5. Ignore accessibility (color contrast)

Data Input

  • Use relative paths from report location
  • CSV files with clear column headers
  • Data pre-processed and validated

HTML Output

  • Self-contained files (CDN for Plotly)
  • Responsive design (mobile-friendly)
  • Print-friendly styling
  • Accessible color contrast

File Organization

project/
    data/
        raw/           # Original data
        processed/     # Analysis-ready CSV
    reports/
        analysis.html  # Generated reports
    scripts/
        generate_report.py

Error Handling

Common Errors

Error Cause Solution
FileNotFoundError Data file missing Verify data path is correct
KeyError Column not in DataFrame Check column names match config
ValueError Data type mismatch Convert types before plotting
Empty figure No data after filtering Validate data before visualization

Error Template

def safe_generate_report(data_path: str, output_path: str, config: dict) -> dict:
    """Generate report with error handling."""
    try:
        # Validate data exists
        if not Path(data_path).exists():
            return {'status': 'error', 'message': f'Data file not found: {data_path}'}

        # Load and validate
        df = pd.read_csv(data_path)
        if df.empty:
            return {'status': 'error', 'message': 'Data file is empty'}

        # Generate report
        output = generate_report(data_path, output_path, **config)
        return {'status': 'success', 'output': output}

    except Exception as e:
        return {'status': 'error', 'message': str(e)}

Execution Checklist

  • Data file exists and is not empty
  • Column names match chart configuration
  • Output directory exists or is created
  • All charts have titles and labels
  • Report includes executive summary
  • Plotly CDN included for interactivity
  • Responsive design tested on mobile
  • Color contrast meets accessibility standards
  • Report file size is reasonable (<10MB)

Metrics

Metric Target Description
Generation Time <5s Report creation speed
File Size <10MB HTML report size
Load Time <3s Browser render time
Chart Count 1-10 Optimal visualization count
Mobile Score >90 Lighthouse mobile score

Integration

With YAML Workflow

task: generate_report
input:
  data_path: data/processed/results.csv
output:
  report_path: reports/analysis.html
config:
  title: "Analysis Report"
  charts:
    - type: line
      x: time
      y: value

With Data Pipeline

# Pipeline output -> Report input
pipeline_results = process_data(raw_data)
pipeline_results.to_csv('data/processed/results.csv')

generate_report(
    data_path='data/processed/results.csv',
    output_path='reports/analysis.html',
    title='Pipeline Results'
)

Related Skills


Version History

  • 1.1.0 (2026-01-02): Upgraded to SKILL_TEMPLATE_v2 format with Quick Start, Error Handling, Metrics, Execution Checklist, additional examples
  • 1.0.0 (2024-10-15): Initial release with Plotly visualizations, HTML templates, responsive design