Claude Code Plugins

Community-maintained marketplace

Feedback
0
0

Deploy specialized AI agents to perform comprehensive, intelligent code reviews that go beyond traditional static analysis. Use for automated multi-agent review, security vulnerability analysis, performance bottleneck detection, and architecture pattern validation.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name github-code-review
description Deploy specialized AI agents to perform comprehensive, intelligent code reviews that go beyond traditional static analysis. Use for automated multi-agent review, security vulnerability analysis, performance bottleneck detection, and architecture pattern validation.

GitHub Code Review Skill

Overview

Deploy specialized AI agents for comprehensive code reviews. This skill provides multi-agent review capabilities covering security vulnerabilities, performance bottlenecks, architecture patterns, and code style enforcement.

Quick Start

# Get PR details for review
gh pr view 123 --json files,additions,deletions,title,body

# Get PR diff
gh pr diff 123

# Post review comment
gh pr review 123 --comment --body "Review findings..."

# Approve PR
gh pr review 123 --approve --body "LGTM!"

# Request changes
gh pr review 123 --request-changes --body "Please fix..."

When to Use

  • Automated code review for pull requests
  • Security vulnerability analysis
  • Performance bottleneck detection
  • Architecture pattern validation
  • Style and convention enforcement
  • Multi-agent collaborative review

Review Agents

Security Agent

Check Description
SQL injection Detect SQL injection vulnerabilities
XSS Cross-site scripting attack vectors
Authentication Auth bypasses and flaws
Cryptographic Weak crypto implementations
Secrets Exposed credentials or API keys
CORS Misconfiguration issues

Performance Agent

Metric Description
Algorithm complexity Big-O analysis
Query efficiency N+1 queries, slow queries
Memory patterns Allocation and leaks
Cache utilization Caching opportunities
Bundle size Impact on bundle size

Style Agent

Check Description
Code formatting Consistent formatting
Naming conventions Variable/function naming
Documentation Comment quality
Test coverage Missing tests
Error handling Proper error patterns

Architecture Agent

Pattern Description
SOLID principles Single responsibility, etc.
DRY violations Code duplication
Coupling metrics Component dependencies
Layer violations Architecture boundaries
Circular dependencies Dependency cycles

Usage Examples

1. Multi-Agent Review System

# Get PR details
PR_DATA=$(gh pr view 123 --json files,additions,deletions,title,body)
PR_DIFF=$(gh pr diff 123)

# Initialize swarm with PR context
npx ruv-swarm github review-init \
  --pr 123 \
  --pr-data "$PR_DATA" \
  --diff "$PR_DIFF" \
  --agents "security,performance,style,architecture" \
  --depth comprehensive

# Post initial review status
gh pr comment 123 --body "Multi-agent code review initiated"

2. Security-Focused Review

# Get changed files
CHANGED_FILES=$(gh pr view 123 --json files --jq '.files[].path')

# Run security review
SECURITY_RESULTS=$(npx ruv-swarm github review-security \
  --pr 123 \
  --files "$CHANGED_FILES" \
  --check "owasp,cve,secrets,permissions" \
  --suggest-fixes)

# Post findings based on severity
if echo "$SECURITY_RESULTS" | grep -q "critical"; then
  gh pr review 123 --request-changes --body "$SECURITY_RESULTS"
  gh pr edit 123 --add-label "security-review-required"
else
  gh pr comment 123 --body "$SECURITY_RESULTS"
fi

3. Initialize Review Swarm

// Initialize code review swarm
mcp__claude-flow__swarm_init({ topology: "hierarchical", maxAgents: 5 })
mcp__claude-flow__agent_spawn({ type: "reviewer", name: "Security Reviewer" })
mcp__claude-flow__agent_spawn({ type: "reviewer", name: "Performance Reviewer" })
mcp__claude-flow__agent_spawn({ type: "reviewer", name: "Style Reviewer" })
mcp__claude-flow__agent_spawn({ type: "architect", name: "Architecture Reviewer" })

// Orchestrate parallel review
mcp__claude-flow__task_orchestrate({
    task: "Comprehensive code review covering security, performance, style, and architecture",
    strategy: "parallel",
    priority: "high"
})

4. Post Inline Comments

# Get diff with context
PR_DIFF=$(gh pr diff 123 --color never)
PR_FILES=$(gh pr view 123 --json files)

# Generate review comments
COMMENTS=$(npx ruv-swarm github review-comment \
  --pr 123 \
  --diff "$PR_DIFF" \
  --files "$PR_FILES" \
  --style "constructive" \
  --include-examples \
  --suggest-fixes)

# Post inline comments
echo "$COMMENTS" | jq -c '.[]' | while read -r comment; do
  FILE=$(echo "$comment" | jq -r '.path')
  LINE=$(echo "$comment" | jq -r '.line')
  BODY=$(echo "$comment" | jq -r '.body')

  gh api \
    --method POST \
    /repos/owner/repo/pulls/123/comments \
    -f path="$FILE" \
    -f line="$LINE" \
    -f body="$BODY" \
    -f commit_id="$(gh pr view 123 --json headRefOid -q .headRefOid)"
done

Review Configuration

# .github/review-swarm.yml
version: 1
review:
  auto-trigger: true
  required-agents:
    - security
    - performance
    - style
  optional-agents:
    - architecture
    - accessibility
    - i18n

  thresholds:
    security: block
    performance: warn
    style: suggest

  rules:
    security:
      - no-eval
      - no-hardcoded-secrets
      - proper-auth-checks
    performance:
      - no-n-plus-one
      - efficient-queries
      - proper-caching
    architecture:
      - max-coupling: 5
      - min-cohesion: 0.7
      - follow-patterns

MCP Tool Integration

Swarm Coordination

// Initialize review swarm
mcp__claude-flow__swarm_init({
    topology: "hierarchical",
    maxAgents: 5,
    strategy: "specialized"
})

// Spawn specialized reviewers
mcp__claude-flow__agents_spawn_parallel({
    agents: [
        { type: "reviewer", name: "security-agent", capabilities: ["security-audit"] },
        { type: "reviewer", name: "perf-agent", capabilities: ["performance-analysis"] },
        { type: "reviewer", name: "style-agent", capabilities: ["code-style"] }
    ]
})

Memory for Review State

// Store review findings
mcp__claude-flow__memory_usage({
    action: "store",
    key: "review/pr-123/findings",
    value: JSON.stringify({
        security: { issues: 2, severity: "medium" },
        performance: { issues: 1, severity: "low" },
        style: { issues: 5, severity: "info" }
    })
})

GitHub Actions Integration

# .github/workflows/auto-review.yml
name: Automated Code Review
on:
  pull_request:
    types: [opened, synchronize]

jobs:
  swarm-review:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
        with:
          fetch-depth: 0

      - name: Setup GitHub CLI
        run: echo "${{ secrets.GITHUB_TOKEN }}" | gh auth login --with-token

      - name: Run Review Swarm
        run: |
          PR_NUM=${{ github.event.pull_request.number }}
          PR_DATA=$(gh pr view $PR_NUM --json files,title,body,labels)

          REVIEW_OUTPUT=$(npx ruv-swarm github review-all \
            --pr $PR_NUM \
            --pr-data "$PR_DATA" \
            --agents "security,performance,style,architecture")

          echo "$REVIEW_OUTPUT" | gh pr review $PR_NUM --comment -F -

          if echo "$REVIEW_OUTPUT" | grep -q "approved"; then
            gh pr review $PR_NUM --approve
          elif echo "$REVIEW_OUTPUT" | grep -q "changes-requested"; then
            gh pr review $PR_NUM --request-changes -b "See review comments above"
          fi

Comment Templates

Security Issue

**Security Issue: [Type]**

**Severity**: Critical / High / Low

**Description**:
[Clear explanation of the security issue]

**Impact**:
[Potential consequences if not addressed]

**Suggested Fix**:
```language
[Code example of the fix]

References:


### Performance Issue

```markdown
**Performance Issue: [Type]**

**Impact**: [Expected performance degradation]

**Current**:
```language
[Current code]

Suggested:

[Optimized code]

## Best Practices

### 1. Review Configuration
- Define clear review criteria
- Set appropriate thresholds
- Configure agent specializations
- Establish override procedures

### 2. Comment Quality
- Provide actionable feedback
- Include code examples
- Reference documentation
- Maintain respectful tone

### 3. Performance
- Cache analysis results
- Incremental reviews for large PRs
- Parallel agent execution
- Smart comment batching

---

## Version History

- **1.0.0** (2025-01-02): Initial release - converted from code-review-swarm agent