Claude Code Plugins

Community-maintained marketplace

Feedback

optimization-monitor

@vamseeachanta/workspace-hub
0
0

Real-time performance metrics collection, bottleneck detection, SLA monitoring, anomaly detection, and resource tracking. Use for continuous system monitoring, performance dashboards, and proactive issue detection.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name optimization-monitor
description Real-time performance metrics collection, bottleneck detection, SLA monitoring, anomaly detection, and resource tracking. Use for continuous system monitoring, performance dashboards, and proactive issue detection.

Performance Monitor Skill

Overview

This skill provides comprehensive real-time performance monitoring capabilities including metrics collection, bottleneck detection, SLA compliance tracking, anomaly detection, and resource utilization monitoring for swarm-based systems.

When to Use

  • Continuous monitoring of swarm performance
  • Detecting performance bottlenecks before they impact operations
  • Tracking SLA compliance and generating alerts
  • Anomaly detection in system metrics
  • Resource utilization tracking and forecasting
  • Building real-time performance dashboards

Quick Start

# Start comprehensive monitoring
npx claude-flow performance-report --format detailed --timeframe 24h

# Real-time bottleneck analysis
npx claude-flow bottleneck-analyze --component swarm-coordination

# Health check all components
npx claude-flow health-check --components ["swarm", "agents", "coordination"]

# Collect specific metrics
npx claude-flow metrics-collect --components ["cpu", "memory", "network"]

Architecture

+-----------------------------------------------------------+
|                  Performance Monitor                       |
+-----------------------------------------------------------+
|  Metrics Collector  |  Bottleneck Analyzer  |  SLA Monitor |
+---------------------+-----------------------+--------------+
         |                     |                      |
         v                     v                      v
+-------------------+  +------------------+  +---------------+
| System Metrics    |  | Pattern Detection|  | Threshold     |
| - CPU/Memory      |  | - CPU Bottleneck |  | Checking      |
| - I/O/Network     |  | - Memory Leak    |  | - Availability|
| - Process Stats   |  | - I/O Saturation |  | - Response    |
+-------------------+  | - Network Issues |  | - Throughput  |
                       +------------------+  +---------------+
         |                     |                      |
         v                     v                      v
+-----------------------------------------------------------+
|              Dashboard Provider (Real-time)                |
+-----------------------------------------------------------+

Core Capabilities

1. Multi-Dimensional Metrics Collection

// Real-time metrics collection
const metrics = await mcp.metrics_collect({
  components: ['cpu', 'memory', 'network', 'agents']
});

// System metrics include:
// - CPU: usage, load average, core utilization
// - Memory: usage, available, pressure
// - I/O: disk usage, disk I/O, network I/O
// - Processes: count, threads, handles

2. Bottleneck Detection

Detects and categorizes bottlenecks:

  • CPU Bottlenecks: High CPU usage, core saturation
  • Memory Bottlenecks: Memory pressure, leak detection
  • I/O Bottlenecks: Disk saturation, network congestion
  • Coordination Bottlenecks: Agent communication delays
  • Task Queue Bottlenecks: Queue backup, processing delays
# Analyze specific component
npx claude-flow bottleneck-analyze --component task-queue

# Full system analysis
npx claude-flow bottleneck-analyze

3. SLA Monitoring

Configure and monitor SLA metrics:

Metric Description Typical Threshold
Availability System uptime percentage 99.9%
Response Time Request latency < 1000ms
Throughput Requests per second > 100 RPS
Error Rate Failed requests percentage < 0.1%
Recovery Time Time to recover from failure < 300s

4. Anomaly Detection

Multi-model anomaly detection:

  • Statistical: 3-sigma rule deviation detection
  • Machine Learning: Trained anomaly detection models
  • Time Series: LSTM-based temporal anomaly detection
  • Behavioral: Agent behavior pattern analysis

Key Metrics

KPIs Monitored

Category Metrics
Availability Uptime, MTBF, MTTR
Performance Response time (p50/p90/p95/p99), throughput
Efficiency Resource utilization, cost per transaction
Reliability Error rate, success rate, fault tolerance

Resource Tracking

  • CPU: Current, peak, average utilization with percentiles
  • Memory: Usage trends, leak detection, pressure indicators
  • Network: Bandwidth utilization, latency, packet loss
  • Agents: Per-agent efficiency, responsiveness, reliability

MCP Integration

// Comprehensive monitoring setup
const monitoring = {
  // Start all monitors
  async startMonitoring() {
    const [health, performance, bottlenecks] = await Promise.all([
      mcp.health_check({ components: ['swarm', 'coordination'] }),
      mcp.performance_report({ format: 'detailed', timeframe: '24h' }),
      mcp.bottleneck_analyze({})
    ]);

    return { health, performance, bottlenecks };
  },

  // Agent performance tracking
  async monitorAgents(swarmId) {
    const agents = await mcp.agent_list({ swarmId });
    const metrics = new Map();

    for (const agent of agents) {
      metrics.set(agent.id, await mcp.agent_metrics({ agentId: agent.id }));
    }

    return metrics;
  }
};

Alert Configuration

# Configure performance alerts
npx claude-flow alert-config --metric cpu_usage --threshold 80 --severity warning

# Set up anomaly detection
npx claude-flow anomaly-setup --models ["statistical", "ml", "time_series"]

# Configure notification channels
npx claude-flow notification-config --channels ["slack", "email", "webhook"]

Integration Points

Integration Purpose
Load Balancer Provides performance data for load balancing decisions
Topology Optimizer Supplies network and coordination metrics
Resource Allocator Shares resource utilization and forecasting data
Task Orchestrator Monitors task execution performance

Best Practices

  1. Baseline Establishment: Collect baseline metrics before monitoring for anomalies
  2. Alert Tuning: Start with conservative thresholds, tune based on false positive rate
  3. Multi-Layer Monitoring: Monitor at system, agent, and task levels
  4. Historical Analysis: Retain metrics for trend analysis and capacity planning
  5. Proactive Detection: Use predictive analytics to detect issues before impact

Example: Dashboard Data Provider

// Real-time dashboard data
const dashboardData = {
  overview: {
    swarmHealth: 'healthy',
    activeAgents: 12,
    totalTasks: 1547,
    averageResponseTime: 45  // ms
  },
  performance: {
    throughput: 250,  // tasks/sec
    latency: { p50: 40, p90: 85, p99: 120 },  // ms
    errorRate: 0.02,  // percentage
    utilization: 0.72  // percentage
  },
  alerts: [],
  timestamp: Date.now()
};

Related Skills

  • optimization-benchmark - Comprehensive performance benchmarking
  • optimization-load-balancer - Dynamic load distribution
  • optimization-resources - Resource allocation and scaling
  • optimization-topology - Network topology optimization

Version History

  • 1.0.0 (2026-01-02): Initial release - converted from performance-monitor agent with metrics collection, bottleneck detection, SLA monitoring, anomaly detection, and dashboard integration