Claude Code Plugins

Community-maintained marketplace

Feedback

optimization-resources

@vamseeachanta/workspace-hub
0
0

Adaptive resource allocation, predictive scaling with ML, capacity planning, circuit breakers, and performance profiling. Use for intelligent resource management, auto-scaling, and fault tolerance.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name optimization-resources
description Adaptive resource allocation, predictive scaling with ML, capacity planning, circuit breakers, and performance profiling. Use for intelligent resource management, auto-scaling, and fault tolerance.

Resource Allocator Skill

Overview

This skill provides comprehensive adaptive resource allocation capabilities including ML-powered predictive scaling, capacity planning, fault tolerance patterns, and performance profiling for efficient swarm resource management.

When to Use

  • Dynamically allocating resources based on workload
  • Predictive scaling before demand spikes
  • Capacity planning for future growth
  • Implementing fault tolerance (circuit breakers, bulkheads)
  • Performance profiling and optimization
  • Cost-efficient resource management

Quick Start

# Analyze resource usage
npx claude-flow metrics-collect --components ["cpu", "memory", "network"]

# Optimize resource allocation
npx claude-flow daa-resource-alloc --resources <resource-config>

# Predictive scaling
npx claude-flow swarm-scale --swarm-id <id> --target-size <size>

# Performance profiling
npx claude-flow performance-report --format detailed --timeframe 24h

Architecture

+-----------------------------------------------------------+
|                   Resource Allocator                       |
+-----------------------------------------------------------+
|  Adaptive Allocator  |  Predictive Scaler  |  Profiler    |
+----------------------+---------------------+--------------+
          |                    |                    |
          v                    v                    v
+------------------+  +------------------+  +---------------+
| Multi-Objective  |  | ML Models        |  | CPU Profiler  |
| Optimization     |  | - LSTM TimeSeries|  | Memory Profiler|
| - Genetic Algo   |  | - Random Forest  |  | I/O Profiler  |
| - Constraint     |  | - Deep Q-Network |  | Network Prof  |
+------------------+  +------------------+  +---------------+
          |                    |                    |
          v                    v                    v
+-----------------------------------------------------------+
|           Circuit Breaker / Fault Tolerance                |
+-----------------------------------------------------------+

Core Capabilities

1. Adaptive Resource Allocation

Dynamic allocation based on workload patterns:

// Workload pattern analysis
const patterns = {
  temporal: {
    hourly: analyzeHourlyPatterns(),    // Peak hours
    daily: analyzeDailyPatterns(),       // Weekday vs weekend
    weekly: analyzeWeeklyPatterns(),     // Week cycles
    seasonal: analyzeSeasonalPatterns()  // Monthly/quarterly
  },
  load: {
    baseline: calculateBaselineLoad(),   // Normal load
    peaks: identifyPeakPatterns(),       // Peak times
    valleys: identifyValleyPatterns(),   // Low usage
    spikes: detectAnomalousSpikes()      // Unusual bursts
  },
  correlations: {
    cpu_memory: analyzeCPUMemoryCorrelation(),
    network_load: analyzeNetworkLoadCorrelation(),
    agent_resource: analyzeAgentResourceCorrelation()
  }
};

2. ML-Powered Predictive Scaling

Model Use Case Accuracy
LSTM Time Series Temporal patterns 85-95%
Random Forest Multi-feature regression 80-90%
Isolation Forest Anomaly detection 90%+
Deep Q-Network Scaling decisions Adaptive
// Predictive scaling workflow
const prediction = await scaler.predictScaling(swarmId, {
  timeHorizon: 3600,    // 1 hour ahead
  confidence: 0.95,      // 95% confidence
  models: ['lstm', 'ensemble']
});

// Returns:
// - predictions: Resource needs forecast
// - scalingPlan: Recommended scaling actions
// - confidence: Prediction confidence

3. Multi-Objective Optimization

Genetic algorithm for resource optimization:

// Optimization objectives
const objectives = [
  { name: 'minimizeLatency', weight: 0.3 },
  { name: 'maximizeUtilization', weight: 0.25 },
  { name: 'balanceLoad', weight: 0.25 },
  { name: 'minimizeCost', weight: 0.2 }
];

// Genetic algorithm configuration
const geneticConfig = {
  populationSize: 100,
  generations: 200,
  mutationRate: 0.1,
  crossoverRate: 0.8
};

// Returns Pareto-optimal solutions

4. Fault Tolerance Patterns

Circuit Breaker

const circuitBreaker = {
  failureThreshold: 5,     // Open after 5 failures
  recoveryTimeout: 60000,  // 60s before half-open
  successThreshold: 3,     // Close after 3 successes

  // Adaptive threshold adjustment
  adaptiveConfig: {
    enabled: true,
    windowSize: 1000,      // Analyze last 1000 requests
    adjustmentRate: 0.1    // 10% threshold adjustment
  }
};

Bulkhead Pattern

// Resource isolation pools
const bulkheads = [
  { name: 'critical', capacity: 10, queue: 50 },
  { name: 'standard', capacity: 20, queue: 100 },
  { name: 'background', capacity: 5, queue: 200 }
];

Performance Profiling

CPU Profiling

  • High-frequency sampling (10ms intervals)
  • Flame graph generation
  • Hotspot identification
  • Function-level statistics

Memory Profiling

  • Snapshot-based analysis (5s intervals)
  • Allocation/deallocation tracking
  • Memory leak detection
  • Growth pattern analysis

I/O Profiling

  • Disk I/O statistics
  • Network I/O metrics
  • Latency analysis
  • Bottleneck identification

MCP Integration

// Resource management integration
const resourceIntegration = {
  // Dynamic allocation
  async allocateResources(swarmId, requirements) {
    const [usage, performance, bottlenecks] = await Promise.all([
      mcp.metrics_collect({ components: ['cpu', 'memory', 'network', 'agents'] }),
      mcp.performance_report({ format: 'detailed' }),
      mcp.bottleneck_analyze({})
    ]);

    const allocation = this.calculateOptimalAllocation(
      usage, performance, bottlenecks, requirements
    );

    return await mcp.daa_resource_alloc({
      resources: allocation.resources,
      agents: allocation.agents
    });
  },

  // Predictive scaling
  async predictiveScale(swarmId, predictions) {
    const status = await mcp.swarm_status({ swarmId });
    const plan = this.calculateScalingPlan(status, predictions);

    if (plan.scaleRequired) {
      await mcp.swarm_scale({ swarmId, targetSize: plan.targetSize });
      await mcp.topology_optimize({ swarmId });
    }

    return plan;
  }
};

Commands Reference

# Run performance optimization
npx claude-flow optimize-performance --swarm-id <id> --strategy adaptive

# Generate resource forecasts
npx claude-flow forecast-resources --time-horizon 3600 --confidence 0.95

# Profile system performance
npx claude-flow profile-performance --duration 60000 --components all

# Analyze bottlenecks
npx claude-flow bottleneck-analyze --component swarm-coordination

# Circuit breaker configuration
npx claude-flow fault-tolerance --strategy circuit-breaker --config <config>

Key Metrics

Resource Allocation KPIs

Category Metric Target
Efficiency Utilization rate > 70%
Efficiency Waste percentage < 10%
Efficiency Allocation accuracy > 90%
Performance Allocation latency < 100ms
Performance Scaling response time < 30s
Reliability Availability > 99.9%
Reliability Recovery time < 30s

Profiling Output

// Profiling results structure
const profilingResults = {
  cpu: {
    samples: [],           // CPU samples
    hotspots: [],          // Top CPU consumers
    flamegraph: {}         // Visualization data
  },
  memory: {
    snapshots: [],         // Memory snapshots
    leaks: [],             // Potential leaks
    growth: []             // Growth patterns
  },
  recommendations: [
    { type: 'optimization', target: 'cpu', suggestion: '...' }
  ]
};

Reinforcement Learning for Scaling

// Deep Q-Network agent for scaling decisions
const scalingAgent = {
  stateSize: 10,           // Resource metrics
  actionSize: 5,           // Scale up/down/none
  learningRate: 0.001,
  epsilon: 1.0,            // Exploration rate
  epsilonDecay: 0.995,
  memorySize: 10000,

  // Training loop learns optimal scaling policies
  async train(environment, episodes = 1000) {
    // Agent learns from experience
    // Maximizes resource efficiency while minimizing cost
  }
};

Integration Points

Integration Purpose
Load Balancer Resource data for load decisions
Performance Monitor Performance metrics and bottlenecks
Topology Optimizer Coordinate with topology changes
Task Orchestrator Resource allocation for tasks

Best Practices

  1. Predictive vs Reactive: Use prediction for expected patterns, reactive for anomalies
  2. Gradual Scaling: Scale incrementally to avoid oscillation
  3. Resource Limits: Set hard limits to prevent runaway allocation
  4. Cost Awareness: Include cost in optimization objectives
  5. Monitoring: Continuously monitor allocation effectiveness
  6. Fallback Strategies: Always have fallback for prediction failures

Example: Adaptive Scaling

// Adaptive scaling configuration
const adaptiveScaler = {
  config: {
    minAgents: 2,
    maxAgents: 50,
    scaleUpThreshold: 0.8,    // 80% utilization
    scaleDownThreshold: 0.3,  // 30% utilization
    cooldownPeriod: 300000,   // 5 minutes
    predictionWeight: 0.7,    // 70% prediction, 30% reactive
  },

  async evaluate(swarmId) {
    const current = await this.getCurrentUtilization(swarmId);
    const predicted = await this.predictFutureLoad(swarmId);

    const combined = current * 0.3 + predicted * 0.7;

    if (combined > this.config.scaleUpThreshold) {
      return { action: 'scale_up', reason: 'high_utilization' };
    } else if (combined < this.config.scaleDownThreshold) {
      return { action: 'scale_down', reason: 'low_utilization' };
    }

    return { action: 'none' };
  }
};

Related Skills

  • optimization-monitor - Real-time performance monitoring
  • optimization-load-balancer - Dynamic load distribution
  • optimization-topology - Network topology optimization
  • optimization-benchmark - Performance validation

Version History

  • 1.0.0 (2026-01-02): Initial release - converted from resource-allocator agent with adaptive allocation, ML-powered scaling, fault tolerance patterns, and performance profiling