Claude Code Plugins

Community-maintained marketplace

Feedback

optimization-topology

@vamseeachanta/workspace-hub
0
0

Dynamic swarm topology reconfiguration, network latency optimization, agent placement, and communication pattern optimization. Use for optimizing swarm structure, reducing communication overhead, and adaptive network design.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name optimization-topology
description Dynamic swarm topology reconfiguration, network latency optimization, agent placement, and communication pattern optimization. Use for optimizing swarm structure, reducing communication overhead, and adaptive network design.

Topology Optimizer Skill

Overview

This skill provides sophisticated swarm topology optimization capabilities including dynamic reconfiguration, network latency optimization, agent placement strategies, and communication pattern optimization for optimal swarm coordination.

When to Use

  • Optimizing swarm communication patterns
  • Reducing network latency and overhead
  • Dynamic topology reconfiguration based on workload
  • Agent placement for minimal communication distance
  • Scaling swarms while maintaining performance
  • AI-powered topology prediction and optimization

Quick Start

# Analyze current topology
npx claude-flow topology-analyze --swarm-id <id> --metrics performance

# Optimize topology automatically
npx claude-flow topology-optimize --swarm-id <id> --strategy adaptive

# Compare topology configurations
npx claude-flow topology-compare --topologies ["hierarchical", "mesh", "hybrid"]

# Generate topology recommendations
npx claude-flow topology-recommend --workload-profile <file> --constraints <file>

Architecture

+-----------------------------------------------------------+
|                   Topology Optimizer                       |
+-----------------------------------------------------------+
|  Topology Engine  |  Network Optimizer  |  Placement Algo |
+-------------------+---------------------+-----------------+
         |                   |                    |
         v                   v                    v
+----------------+  +------------------+  +------------------+
| Topologies     |  | Latency Optimize |  | Placement Algos  |
| - Hierarchical |  | - Physical       |  | - Genetic        |
| - Mesh         |  | - Routing        |  | - Sim Annealing  |
| - Ring         |  | - Protocol       |  | - Particle Swarm |
| - Star         |  | - Caching        |  | - Graph Partition|
| - Hybrid       |  | - Compression    |  | - ML-Based       |
+----------------+  +------------------+  +------------------+
         |                   |                    |
         v                   v                    v
+-----------------------------------------------------------+
|           Communication Pattern Optimizer                  |
+-----------------------------------------------------------+

Topology Types

Topology Best For Latency Scalability Fault Tolerance
Hierarchical Large teams, clear hierarchy Medium High Medium
Mesh Small teams, high collaboration Low Low High
Ring Sequential processing Medium Medium Low
Star Central coordination Low Medium Low
Hybrid Complex workloads Variable High High
Adaptive Dynamic workloads Optimized High High

Core Capabilities

1. Dynamic Topology Reconfiguration

// Topology optimization workflow
const optimization = await topologyOptimizer.optimize(swarm, workloadProfile, {
  minImprovement: 0.1,    // Only change if 10%+ improvement
  migrationCost: 0.05,    // Factor in migration overhead
  constraints: {
    maxAgentsPerNode: 10,
    minConnectivity: 2,
    maxLatency: 100        // ms
  }
});

// Returns:
// - recommended: Optimal topology
// - improvement: Expected improvement %
// - migrationPlan: Steps to migrate
// - benefits: Detailed improvements

2. Network Latency Optimization

Multi-layer optimization:

Layer Optimization Impact
Physical Agent placement, bandwidth 20-40%
Routing Path optimization, load balancing 10-30%
Protocol TCP/UDP/gRPC selection 5-15%
Caching Reduce redundant communication 30-50%
Compression Reduce payload size 10-25%

3. Agent Placement Algorithms

Multi-algorithm optimization:

// Agent placement strategies
const placementAlgorithms = {
  genetic: {
    populationSize: 100,
    mutationRate: 0.1,
    maxGenerations: 500
  },
  simulated_annealing: {
    initialTemperature: 1000,
    coolingRate: 0.95,
    minTemperature: 1
  },
  particle_swarm: {
    swarmSize: 50,
    inertia: 0.7,
    cognitive: 1.5,
    social: 1.5
  },
  graph_partitioning: {
    objective: 'minimize_cut',
    balanceConstraint: 0.05
  }
};

4. Communication Pattern Optimization

// Message batching strategies
const batchingStrategies = [
  { type: 'time', interval: 100, minBatch: 5 },
  { type: 'size', maxSize: 1024, timeout: 50 },
  { type: 'adaptive', targetLatency: 20 },
  { type: 'priority', highPriorityImmediate: true }
];

// Protocol selection per agent pair
const protocolSelection = {
  tcp: { reliability: 0.99, latency: 'medium' },
  udp: { reliability: 0.95, latency: 'low' },
  websocket: { reliability: 0.98, latency: 'medium' },
  grpc: { reliability: 0.99, latency: 'low' },
  mqtt: { reliability: 0.97, latency: 'low' }
};

Optimization Algorithms

Genetic Algorithm

// Evolve optimal topology
const result = await geneticOptimizer.evolve(
  initialTopologies,
  fitnessFunction,
  {
    populationSize: 50,
    mutationRate: 0.1,
    crossoverRate: 0.8,
    maxGenerations: 100,
    eliteSize: 5
  }
);

// Operations:
// - Selection: Tournament selection
// - Crossover: Topology structure combination
// - Mutation: Connection add/remove/modify

Simulated Annealing

// Find optimal through local search
const result = await annealingOptimizer.optimize(
  initialTopology,
  objectiveFunction,
  {
    initialTemperature: 1000,
    coolingRate: 0.95,
    minTemperature: 1,
    maxIterations: 10000
  }
);

// Neighbor generation:
// - Add connection
// - Remove connection
// - Modify connection weight
// - Relocate agent

MCP Integration

// Topology management integration
const topologyIntegration = {
  // Real-time topology optimization
  async optimizeSwarmTopology(swarmId, config = {}) {
    const [status, performance, bottlenecks] = await Promise.all([
      mcp.swarm_status({ swarmId }),
      mcp.performance_report({ format: 'detailed' }),
      mcp.bottleneck_analyze({ component: 'topology' })
    ]);

    const recommendations = this.generateRecommendations(
      status, performance, bottlenecks, config
    );

    if (recommendations.beneficial) {
      const result = await mcp.topology_optimize({ swarmId });
      return { applied: true, recommendations, result };
    }

    return { applied: false, recommendations };
  },

  // Scale with topology optimization
  async scaleWithTopology(swarmId, targetSize, workloadProfile) {
    await mcp.swarm_scale({ swarmId, targetSize });
    await mcp.topology_optimize({ swarmId });
  }
};

Neural Network Integration

// AI-powered topology prediction
const neuralOptimizer = {
  async predictOptimalTopology(swarmState, workloadProfile) {
    const model = await mcp.model_load({
      modelPath: '/models/topology_optimizer.model'
    });

    const features = this.extractFeatures(swarmState, workloadProfile);

    const prediction = await mcp.neural_predict({
      modelId: model.id,
      input: JSON.stringify(features)
    });

    return {
      predictedTopology: prediction.topology,
      confidence: prediction.confidence,
      expectedImprovement: prediction.improvement
    };
  }
};

Commands Reference

# Analyze current topology
npx claude-flow topology-analyze --swarm-id <id> --metrics performance

# Optimize topology automatically
npx claude-flow topology-optimize --swarm-id <id> --strategy adaptive

# Compare topology configurations
npx claude-flow topology-compare --topologies ["hierarchical", "mesh", "hybrid"]

# Generate topology recommendations
npx claude-flow topology-recommend --workload-profile <file>

# Monitor topology performance
npx claude-flow topology-monitor --swarm-id <id> --interval 60

# Optimize agent placement
npx claude-flow placement-optimize --algorithm genetic --agents <list>

# Analyze placement efficiency
npx claude-flow placement-analyze --current-placement <config>

Key Metrics

Topology Performance Indicators

Category Metric Description
Communication Latency Average message latency
Communication Throughput Messages per second
Communication Bandwidth Util Network usage
Network Diameter Max hops between nodes
Network Clustering Coeff Local connectivity
Network Betweenness Critical path nodes
Fault Tolerance Connectivity Min cuts to disconnect
Fault Tolerance Redundancy Backup paths
Scalability Growth Capacity Max agents supported
Scalability Efficiency Performance at scale

Benchmark Results

const topologyBenchmarks = {
  hierarchical: { latency: 45, throughput: 1200, scalability: 0.95 },
  mesh: { latency: 25, throughput: 2500, scalability: 0.70 },
  ring: { latency: 80, throughput: 800, scalability: 0.85 },
  star: { latency: 30, throughput: 1500, scalability: 0.75 },
  hybrid: { latency: 35, throughput: 2000, scalability: 0.90 }
};

Integration Points

Integration Purpose
Load Balancer Coordinate topology with load distribution
Performance Monitor Topology performance metrics
Resource Allocator Resource constraints for topology
Task Orchestrator Task distribution patterns

Best Practices

  1. Workload Analysis: Understand communication patterns before optimization
  2. Gradual Migration: Migrate topology incrementally
  3. Monitoring: Continuously monitor topology metrics
  4. Hybrid Approach: Combine topologies for different workload types
  5. AI-Assisted: Use ML models for complex optimization
  6. Cost-Benefit: Consider migration cost vs. performance gain

Example: Workload-Aware Topology

// Select topology based on workload
const topologySelector = {
  selectTopology(workloadProfile) {
    const { coordination, parallelism, locality, faultTolerance } = workloadProfile;

    if (coordination > 0.8 && locality > 0.7) {
      return 'hierarchical';  // High coordination, local processing
    } else if (parallelism > 0.8 && faultTolerance > 0.7) {
      return 'mesh';          // High parallelism, fault tolerant
    } else if (locality > 0.9) {
      return 'ring';          // Sequential, local processing
    } else if (coordination > 0.9) {
      return 'star';          // Central coordination
    }

    return 'hybrid';          // Mixed workload
  },

  async optimizeForWorkload(swarmId, workloadProfile) {
    const recommended = this.selectTopology(workloadProfile);
    const current = await this.getCurrentTopology(swarmId);

    if (recommended !== current) {
      await this.migrateTopology(swarmId, recommended);
    }
  }
};

Related Skills

  • optimization-monitor - Real-time performance monitoring
  • optimization-load-balancer - Load distribution optimization
  • optimization-resources - Resource allocation
  • optimization-benchmark - Topology performance testing

Version History

  • 1.0.0 (2026-01-02): Initial release - converted from topology-optimizer agent with dynamic reconfiguration, latency optimization, agent placement algorithms, genetic/simulated annealing optimization, and neural network integration