Claude Code Plugins

Community-maintained marketplace

Feedback

well-production-dashboard

@vamseeachanta/worldenergydata
1
0

Create interactive well production dashboards with real-time monitoring, verification integration, economic metrics, and multi-format exports. Use for well performance analysis, field aggregation, production forecasting, and API-driven dashboards.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name well-production-dashboard
description Create interactive well production dashboards with real-time monitoring, verification integration, economic metrics, and multi-format exports. Use for well performance analysis, field aggregation, production forecasting, and API-driven dashboards.

Well Production Dashboard Skill

Interactive dashboard system for well production visualization, analysis, and monitoring with Flask REST API, verification integration, and comprehensive export capabilities.

When to Use

  • Interactive well production dashboards
  • Real-time well monitoring and alerts
  • Production decline analysis and forecasting
  • Field-level aggregation and comparison
  • Well economic metrics (NPV, decline rates, ROI)
  • Data quality verification integration
  • Multi-format exports (PDF, Excel, JSON)
  • REST API for dashboard data access

Prerequisites

  • Python environment with worldenergydata package installed
  • BSEE well production data
  • Flask (included in dependencies) for API features

Dashboard Types

1. Basic Well Dashboard

Create interactive dashboard for well analysis.

well_production_dashboard:
  basic:
    flag: true
    title: "Well Production Dashboard"
    wells:
      - "API_12345"
      - "API_67890"
    date_range:
      start: "2020-01-01"
      end: "2024-12-31"
    output:
      html_file: "reports/well_dashboard.html"

2. Field Aggregation Dashboard

Aggregate wells to field level with statistics.

well_production_dashboard:
  field_aggregation:
    flag: true
    field_name: "ANCHOR"
    aggregation:
      - total_production
      - mean_production
      - std_deviation
      - well_count
    comparison_fields:
      - "JULIA"
      - "JACK"
    output:
      field_report: "reports/field_comparison.html"

3. Real-Time Monitoring Dashboard

Enable real-time updates with WebSocket.

well_production_dashboard:
  real_time:
    flag: true
    enable_real_time: true
    update_interval_ms: 60000
    websocket_port: 8765
    api_port: 5000
    alerts:
      production_threshold: 1000  # BBL/day
      decline_alert: 0.15  # 15% decline triggers alert
    output:
      dashboard_port: 5000

4. Economic Analysis Dashboard

Dashboard with financial metrics.

well_production_dashboard:
  economics:
    flag: true
    wells:
      - "API_12345"
    metrics:
      - npv
      - decline_rate
      - roi
      - payback_period
    economic_params:
      discount_rate: 0.10
      oil_price: 75.0  # $/BBL
      opex_per_bbl: 12.0
    forecast_periods: 24
    output:
      economics_report: "reports/well_economics.html"

Python API

Dashboard Initialization

from worldenergydata.modules.well_production_dashboard import (
    WellProductionDashboard,
    WellDashboardConfig,
    WellMetrics,
    FieldAggregator,
    DashboardAPI,
    DashboardCLI
)

# Create configuration
config = WellDashboardConfig(
    title="Well Production Dashboard",
    enable_verification=True,
    enable_real_time=False,
    cache_ttl=300,  # 5 minutes
    quality_threshold=0.8,
    api_port=5000,
    export_formats=['pdf', 'excel']
)

# Initialize dashboard
dashboard = WellProductionDashboard(config)
print(f"Dashboard initialized: {config.title}")

Load Well Data

import pandas as pd
from datetime import datetime

# Load from DataFrame
production_data = pd.read_csv('well_production.csv')
dashboard.load_well_data(data=production_data)

# Or load using BSEE query optimizer
dashboard.load_well_data(
    well_ids=['API_12345', 'API_67890'],
    start_date=datetime(2020, 1, 1),
    end_date=datetime(2024, 12, 31)
)

print(f"Loaded {len(dashboard.well_data)} production records")

YAML Configuration Loading

# Load dashboard from YAML config
dashboard = WellProductionDashboard.from_yaml('config/dashboard_config.yaml')

# Example YAML config file structure:
# dashboard:
#   title: "Production Analysis"
#   enable_verification: true
#   cache_ttl: 300
#   quality_threshold: 0.8
# wells:
#   - id: "API_12345"
#   - id: "API_67890"
# filters:
#   date_range:
#     start: "2020-01-01"
#     end: "2024-12-31"

Well Metrics Calculations

from worldenergydata.modules.well_production_dashboard import WellMetrics

# NPV Calculation
cash_flows = [-1500, 200, 400, 600, 800, 700, 500, 400, 300, 200]
npv = WellMetrics.calculate_npv(cash_flows, discount_rate=0.10)
print(f"Well NPV: ${npv:,.2f}M")

# Decline Rate Analysis
production = [1000, 950, 900, 860, 820, 785, 750, 720, 690, 665]
decline_rate = WellMetrics.calculate_decline_rate(production)
print(f"Decline Rate: {decline_rate:.2%}")

# Economic Indicators
revenue = 5_000_000
opex = 1_200_000
capex = 2_500_000

indicators = WellMetrics.calculate_economic_indicators(revenue, opex, capex)
print(f"Profit: ${indicators['profit']:,.0f}")
print(f"Profit Margin: {indicators['profit_margin']:.1%}")
print(f"ROI: {indicators['roi']:.1%}")
print(f"Payback Period: {indicators['payback_period']:.1f} years")

Production Forecasting

import pandas as pd
from worldenergydata.modules.well_production_dashboard import WellMetrics

# Historical production data
historical = pd.Series([1000, 950, 900, 860, 820, 785, 750, 720, 690, 665])

# Forecast 12 months
forecast = WellMetrics.forecast_production(historical, periods=12)

print("Production Forecast:")
print(forecast[['forecast', 'lower_bound', 'upper_bound']].head())

# forecast columns:
# - forecast: predicted production
# - lower_bound: 80% confidence lower
# - upper_bound: 120% confidence upper

Field Aggregation

from worldenergydata.modules.well_production_dashboard import FieldAggregator
import pandas as pd

# Load well data
well_data = pd.DataFrame({
    'date': ['2024-01', '2024-01', '2024-02', '2024-02'],
    'well_id': ['W1', 'W2', 'W1', 'W2'],
    'oil_production': [1000, 1200, 950, 1150],
    'gas_production': [500, 600, 480, 580],
    'water_production': [200, 250, 220, 270]
})

# Aggregate to field level
field_data = FieldAggregator.aggregate_field_data(well_data, 'ANCHOR')
print(field_data)
# Shows: date, oil_production, gas_production, water_production, well_count, field

# Rollup with statistics
rollup = FieldAggregator.rollup_field_data(well_data, 'ANCHOR')
print(rollup.columns)
# Includes: sum, mean, std for each production type

# Compare two fields
field1 = FieldAggregator.rollup_field_data(well_data_1, 'ANCHOR')
field2 = FieldAggregator.rollup_field_data(well_data_2, 'JULIA')

comparison = FieldAggregator.compare_fields(field1, field2)
print(f"Performance Ratio: {comparison['performance_ratio']:.2f}")
print(f"Trend Comparison: {comparison['trend_comparison']:.2f}")

REST API Integration

from worldenergydata.modules.well_production_dashboard import DashboardAPI

# Initialize API with dashboard
api = DashboardAPI(dashboard)

# Run Flask server
api.run(host='0.0.0.0', port=5000, debug=False)

# Available endpoints:
# GET /api/health         - Health check
# GET /api/wells          - List all wells
# GET /api/wells/<id>     - Get specific well data
# GET /api/dashboard/data - Get complete dashboard data

CLI Usage

from worldenergydata.modules.well_production_dashboard import DashboardCLI

# Initialize CLI
cli = DashboardCLI()

# Run with config file
cli.run(config_path='config/dashboard.yaml')

# Or configure programmatically
cli.configure({
    'title': 'Production Dashboard',
    'enable_verification': True,
    'cache_ttl': 300
})

# Export dashboard
result = cli.export(
    format='pdf',
    output_path='reports/dashboard_export.pdf'
)
print(f"Export saved: {result}")

# Get export options
options = cli.get_export_parameters()
print(options)
# format: ['pdf', 'excel', 'json', 'all']
# include_verification: bool
# include_charts: bool
# include_raw_data: bool

Dashboard Export

from worldenergydata.modules.well_production_dashboard import (
    WellProductionDashboard,
    WellDashboardConfig
)
from worldenergydata.modules.well_production_dashboard.export_manager import (
    WellDashboardExportManager,
    ExportConfiguration
)

# Configure dashboard
dashboard = WellProductionDashboard(WellDashboardConfig(
    title="Production Analysis",
    export_formats=['pdf', 'excel']
))

# Load data
dashboard.load_well_data(well_ids=['API_12345'])

# Configure export
export_config = ExportConfiguration(
    formats=['pdf', 'excel', 'json'],
    include_verification=True,
    include_charts=True,
    include_raw_data=True,
    include_field_aggregation=True
)

# Export dashboard
results = dashboard.export_dashboard('reports/analysis', export_config)

for result in results:
    print(f"Exported: {result.format} -> {result.path}")
    print(f"  Success: {result.success}")
    print(f"  File size: {result.file_size} bytes")

Verification Integration

# Dashboard with verification enabled
config = WellDashboardConfig(
    title="Verified Dashboard",
    enable_verification=True,
    quality_threshold=0.8  # 80% quality minimum
)

dashboard = WellProductionDashboard(config)

# Load data - verification runs automatically
dashboard.load_well_data(well_ids=['API_12345'])

# Check verification results
if dashboard.verification_enabled:
    results = dashboard.verification_results
    for well_id, result in results.items():
        print(f"{well_id}: Quality Score = {result.quality_score:.2%}")
        if result.quality_score < 0.8:
            print(f"  Warning: Below quality threshold!")

Caching and Performance

# Dashboard with caching
config = WellDashboardConfig(
    title="High-Performance Dashboard",
    cache_ttl=600,  # 10 minute cache
    enable_verification=True
)

dashboard = WellProductionDashboard(config)

# Monitor cache performance
print(f"Cache hits: {dashboard.cache_hits}")
print(f"Total requests: {dashboard.total_requests}")
print(f"Hit rate: {dashboard.cache_hits/dashboard.total_requests:.1%}")

# Clear cache if needed
dashboard.cache_manager.clear()

Command Line Interface

# Run dashboard server
python -m worldenergydata.modules.well_production_dashboard.cli run --config config/dashboard.yaml

# Export dashboard
python -m worldenergydata.modules.well_production_dashboard.cli export --format pdf --output reports/export.pdf

# List available options
python -m worldenergydata.modules.well_production_dashboard.cli --help

# Verbose mode for debugging
python -m worldenergydata.modules.well_production_dashboard.cli -v run --config config/dashboard.yaml

Key Classes

Class Purpose
WellProductionDashboard Main dashboard controller
WellDashboardConfig Dashboard configuration
WellMetrics Financial and production metrics
FieldAggregator Field-level aggregation
DashboardAPI Flask REST API
DashboardCLI Command-line interface
WellDashboardExportManager Export to PDF/Excel/JSON
QueryOptimizer BSEE data loading optimization
DashboardCacheManager Caching for performance

REST API Endpoints

Endpoint Method Description
/api/health GET Health check
/api/wells GET List all wells
/api/wells/<well_id> GET Get well data
/api/dashboard/data GET Full dashboard data

Export Formats

Format Contents
PDF Charts, tables, verification metadata
Excel Raw data, calculations, summaries
JSON Structured data for integration

Configuration Options

Option Type Default Description
title string "Well Production Dashboard" Dashboard title
enable_verification bool True Enable data verification
enable_real_time bool False Real-time updates
cache_ttl int 300 Cache lifetime (seconds)
quality_threshold float 0.8 Minimum quality score
websocket_port int 8765 WebSocket port
api_port int 5000 REST API port
auth_enabled bool True Enable authentication
export_formats list ['pdf', 'excel'] Available exports

Best Practices

  1. Enable verification - Always validate data quality before analysis
  2. Use caching - Set appropriate TTL for performance
  3. Configure exports - Include verification metadata in reports
  4. Monitor performance - Track cache hit rates
  5. Use YAML configs - Version control dashboard configurations

Related Skills

References

  • Flask REST API Documentation
  • Plotly Interactive Charts
  • BSEE Data Standards