| name | data-quality |
| description | Comprehensive data quality patterns using Great Expectations, DLT expectations, and custom validators for ensuring data reliability and trust. |
| triggers | data quality, great expectations, data validation, quality checks, data profiling |
| category | quality |
Data Quality Skill
Overview
Data quality is critical for building trustworthy data products. This skill provides comprehensive patterns for implementing data quality checks using Great Expectations, DLT expectations, and custom validation frameworks.
Key Benefits:
- Automated data quality testing
- Comprehensive profiling and validation
- Integration with DLT pipelines
- Custom business rule validation
- Quality metrics and monitoring
- Data contract enforcement
When to Use This Skill
Use data quality patterns when you need to:
- Validate data against business rules
- Profile datasets for quality metrics
- Implement comprehensive testing frameworks
- Monitor data quality over time
- Enforce data contracts between teams
- Prevent bad data from propagating
- Generate quality reports and alerts
Core Concepts
1. Quality Dimensions
Completeness: Are all required fields present?
# Check for null values
completeness_check = {
"expectation": "expect_column_values_to_not_be_null",
"kwargs": {"column": "customer_id"}
}
Accuracy: Does data match expected patterns?
# Validate email format
accuracy_check = {
"expectation": "expect_column_values_to_match_regex",
"kwargs": {
"column": "email",
"regex": r"^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}$"
}
}
Consistency: Are values within expected ranges?
# Check value ranges
consistency_check = {
"expectation": "expect_column_values_to_be_between",
"kwargs": {
"column": "age",
"min_value": 0,
"max_value": 120
}
}
Uniqueness: Are keys unique?
# Check for duplicates
uniqueness_check = {
"expectation": "expect_column_values_to_be_unique",
"kwargs": {"column": "order_id"}
}
Timeliness: Is data fresh?
# Check data freshness
timeliness_check = {
"expectation": "expect_column_max_to_be_between",
"kwargs": {
"column": "ingestion_timestamp",
"min_value": datetime.now() - timedelta(hours=2),
"max_value": datetime.now()
}
}
2. Great Expectations Integration
Basic Setup:
import great_expectations as gx
from great_expectations.core.batch import RuntimeBatchRequest
# Initialize data context
context = gx.get_context()
# Create checkpoint
checkpoint_config = {
"name": "sales_data_quality_check",
"config_version": 1.0,
"class_name": "SimpleCheckpoint",
"validations": [
{
"batch_request": {
"datasource_name": "spark_datasource",
"data_connector_name": "runtime_connector",
"data_asset_name": "sales_data"
},
"expectation_suite_name": "sales_quality_suite"
}
]
}
Expectation Suite:
# Create expectation suite
suite = context.create_expectation_suite(
expectation_suite_name="sales_quality_suite",
overwrite_existing=True
)
# Add expectations
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_table_row_count_to_be_between",
kwargs={"min_value": 1000, "max_value": 1000000}
)
)
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_not_be_null",
kwargs={"column": "order_id"}
)
)
3. DLT Quality Checks
Multi-Level Expectations:
import dlt
from pyspark.sql.functions import *
@dlt.table(
name="validated_orders",
comment="Orders with comprehensive quality validation"
)
# Critical checks (fail pipeline)
@dlt.expect_or_fail("primary_key_not_null", "order_id IS NOT NULL")
@dlt.expect_or_fail("valid_customer_ref",
"customer_id IN (SELECT customer_id FROM LIVE.customers)")
# Important checks (drop invalid rows)
@dlt.expect_or_drop("positive_amount", "order_amount > 0")
@dlt.expect_or_drop("valid_date_range",
"order_date >= '2020-01-01' AND order_date <= current_date()")
@dlt.expect_or_drop("valid_status",
"order_status IN ('pending', 'completed', 'cancelled')")
# Monitoring checks (warn only)
@dlt.expect("reasonable_amount", "order_amount < 100000")
@dlt.expect("same_day_processing",
"datediff(processing_date, order_date) <= 1")
def validated_orders():
return dlt.read_stream("raw_orders")
4. Custom Validators
Business Rule Validators:
from typing import Dict, Any, List
from pyspark.sql import DataFrame
from pyspark.sql.functions import *
class BusinessRuleValidator:
"""Custom validator for complex business rules."""
def __init__(self, spark_session):
self.spark = spark_session
self.validation_results = []
def validate_order_logic(self, df: DataFrame) -> Dict[str, Any]:
"""Validate complex order business rules."""
# Rule 1: Total matches sum of line items
total_mismatch = df.filter(
abs(col("order_total") - col("line_items_sum")) > 0.01
).count()
# Rule 2: Discount doesn't exceed maximum allowed
invalid_discount = df.filter(
col("discount_amount") > col("order_subtotal") * 0.5
).count()
# Rule 3: Shipping date after order date
invalid_dates = df.filter(
col("shipping_date") < col("order_date")
).count()
return {
"total_records": df.count(),
"total_mismatch_count": total_mismatch,
"invalid_discount_count": invalid_discount,
"invalid_dates_count": invalid_dates,
"pass_rate": (
df.count() - total_mismatch - invalid_discount - invalid_dates
) / df.count() * 100
}
def validate_referential_integrity(
self,
df: DataFrame,
reference_table: str,
key_column: str
) -> Dict[str, Any]:
"""Check referential integrity constraints."""
ref_df = self.spark.table(reference_table)
# Find orphaned records
orphaned = df.join(
ref_df,
df[key_column] == ref_df[key_column],
"left_anti"
)
orphaned_count = orphaned.count()
return {
"total_records": df.count(),
"orphaned_records": orphaned_count,
"orphaned_percentage": orphaned_count / df.count() * 100,
"valid": orphaned_count == 0
}
Implementation Patterns
Pattern 1: Great Expectations Suite
Complete Quality Suite:
"""
Great Expectations suite for customer data validation.
"""
import great_expectations as gx
from great_expectations.core.batch import RuntimeBatchRequest
from pyspark.sql import SparkSession
from typing import Dict, Any
class CustomerDataQualitySuite:
"""Comprehensive quality suite for customer data."""
def __init__(self, context_root_dir: str = None):
self.context = gx.get_context(context_root_dir=context_root_dir)
self.suite_name = "customer_data_quality"
def create_suite(self) -> gx.core.ExpectationSuite:
"""Create comprehensive expectation suite."""
suite = self.context.create_expectation_suite(
expectation_suite_name=self.suite_name,
overwrite_existing=True
)
# Schema validation
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_table_columns_to_match_ordered_list",
kwargs={
"column_list": [
"customer_id",
"first_name",
"last_name",
"email",
"phone",
"registration_date",
"status",
"lifetime_value"
]
}
)
)
# Completeness checks
for col in ["customer_id", "email", "registration_date"]:
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_not_be_null",
kwargs={"column": col}
)
)
# Uniqueness
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_be_unique",
kwargs={"column": "customer_id"}
)
)
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_be_unique",
kwargs={"column": "email"}
)
)
# Format validation
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_match_regex",
kwargs={
"column": "email",
"regex": r"^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}$"
}
)
)
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_match_regex",
kwargs={
"column": "phone",
"regex": r"^\+?[1-9]\d{1,14}$",
"mostly": 0.95 # Allow 5% invalid
}
)
)
# Value constraints
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_be_in_set",
kwargs={
"column": "status",
"value_set": ["active", "inactive", "suspended", "closed"]
}
)
)
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_be_between",
kwargs={
"column": "lifetime_value",
"min_value": 0,
"max_value": 1000000,
"mostly": 0.99
}
)
)
# Date validation
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_be_between",
kwargs={
"column": "registration_date",
"min_value": "2020-01-01",
"max_value": "2026-12-31",
"parse_strings_as_datetimes": True
}
)
)
# Row count check
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_table_row_count_to_be_between",
kwargs={
"min_value": 100,
"max_value": 10000000
}
)
)
self.context.save_expectation_suite(suite)
return suite
def run_validation(self, df: DataFrame) -> Dict[str, Any]:
"""Run validation against dataframe."""
# Create runtime batch request
batch_request = RuntimeBatchRequest(
datasource_name="spark_datasource",
data_connector_name="runtime_connector",
data_asset_name="customer_data",
runtime_parameters={"batch_data": df},
batch_identifiers={"default_identifier_name": "default_identifier"}
)
# Run checkpoint
checkpoint_result = self.context.run_checkpoint(
checkpoint_name="customer_data_checkpoint",
validations=[
{
"batch_request": batch_request,
"expectation_suite_name": self.suite_name
}
]
)
return {
"success": checkpoint_result.success,
"statistics": checkpoint_result.run_results,
"validation_results": checkpoint_result.to_json_dict()
}
Pattern 2: Custom Quality Framework
Comprehensive Quality Framework:
"""
Custom data quality framework for comprehensive validation.
"""
from typing import Dict, List, Any, Callable, Optional
from pyspark.sql import DataFrame, SparkSession
from pyspark.sql.functions import *
from dataclasses import dataclass
from datetime import datetime
import json
@dataclass
class QualityRule:
"""Define a quality rule."""
name: str
description: str
severity: str # 'critical', 'high', 'medium', 'low'
validation_func: Callable[[DataFrame], int]
threshold: float = 1.0 # Pass rate threshold
@dataclass
class QualityResult:
"""Quality validation result."""
rule_name: str
passed: bool
total_records: int
failed_records: int
pass_rate: float
severity: str
timestamp: datetime
details: Dict[str, Any]
class DataQualityFramework:
"""Comprehensive data quality validation framework."""
def __init__(self, spark: SparkSession):
self.spark = spark
self.rules: List[QualityRule] = []
self.results: List[QualityResult] = []
def add_rule(self, rule: QualityRule) -> None:
"""Add validation rule to framework."""
self.rules.append(rule)
def add_completeness_rule(
self,
column: str,
severity: str = "high"
) -> None:
"""Add completeness check for a column."""
def check(df: DataFrame) -> int:
return df.filter(col(column).isNull()).count()
self.add_rule(QualityRule(
name=f"completeness_{column}",
description=f"Check {column} has no null values",
severity=severity,
validation_func=check
))
def add_uniqueness_rule(
self,
column: str,
severity: str = "critical"
) -> None:
"""Add uniqueness check for a column."""
def check(df: DataFrame) -> int:
total = df.count()
unique = df.select(column).distinct().count()
return total - unique
self.add_rule(QualityRule(
name=f"uniqueness_{column}",
description=f"Check {column} values are unique",
severity=severity,
validation_func=check
))
def add_format_rule(
self,
column: str,
regex_pattern: str,
severity: str = "medium"
) -> None:
"""Add format validation rule."""
def check(df: DataFrame) -> int:
return df.filter(
~col(column).rlike(regex_pattern)
).count()
self.add_rule(QualityRule(
name=f"format_{column}",
description=f"Check {column} matches pattern {regex_pattern}",
severity=severity,
validation_func=check
))
def add_range_rule(
self,
column: str,
min_value: Any,
max_value: Any,
severity: str = "medium"
) -> None:
"""Add range validation rule."""
def check(df: DataFrame) -> int:
return df.filter(
(col(column) < min_value) | (col(column) > max_value)
).count()
self.add_rule(QualityRule(
name=f"range_{column}",
description=f"Check {column} is between {min_value} and {max_value}",
severity=severity,
validation_func=check
))
def add_referential_integrity_rule(
self,
column: str,
reference_table: str,
reference_column: str,
severity: str = "critical"
) -> None:
"""Add referential integrity check."""
def check(df: DataFrame) -> int:
ref_df = self.spark.table(reference_table)
orphaned = df.join(
ref_df,
df[column] == ref_df[reference_column],
"left_anti"
)
return orphaned.count()
self.add_rule(QualityRule(
name=f"ref_integrity_{column}",
description=f"Check {column} exists in {reference_table}.{reference_column}",
severity=severity,
validation_func=check
))
def add_custom_rule(
self,
name: str,
description: str,
validation_func: Callable[[DataFrame], int],
severity: str = "medium",
threshold: float = 1.0
) -> None:
"""Add custom validation rule."""
self.add_rule(QualityRule(
name=name,
description=description,
severity=severity,
validation_func=validation_func,
threshold=threshold
))
def validate(self, df: DataFrame) -> Dict[str, Any]:
"""Run all validation rules."""
self.results = []
total_records = df.count()
for rule in self.rules:
try:
failed_count = rule.validation_func(df)
pass_rate = (total_records - failed_count) / total_records * 100
result = QualityResult(
rule_name=rule.name,
passed=pass_rate >= (rule.threshold * 100),
total_records=total_records,
failed_records=failed_count,
pass_rate=pass_rate,
severity=rule.severity,
timestamp=datetime.now(),
details={"description": rule.description}
)
self.results.append(result)
except Exception as e:
self.results.append(QualityResult(
rule_name=rule.name,
passed=False,
total_records=total_records,
failed_records=-1,
pass_rate=0.0,
severity=rule.severity,
timestamp=datetime.now(),
details={"error": str(e)}
))
return self.get_summary()
def get_summary(self) -> Dict[str, Any]:
"""Get validation summary."""
total_rules = len(self.results)
passed_rules = sum(1 for r in self.results if r.passed)
critical_failures = [
r for r in self.results
if not r.passed and r.severity == "critical"
]
return {
"timestamp": datetime.now().isoformat(),
"total_rules": total_rules,
"passed_rules": passed_rules,
"failed_rules": total_rules - passed_rules,
"pass_rate": passed_rules / total_rules * 100 if total_rules > 0 else 0,
"critical_failures": len(critical_failures),
"has_critical_failures": len(critical_failures) > 0,
"results": [
{
"rule": r.rule_name,
"passed": r.passed,
"pass_rate": r.pass_rate,
"failed_records": r.failed_records,
"severity": r.severity
}
for r in self.results
]
}
def save_results(self, output_path: str) -> None:
"""Save validation results to Delta table."""
results_data = [
{
"rule_name": r.rule_name,
"passed": r.passed,
"total_records": r.total_records,
"failed_records": r.failed_records,
"pass_rate": r.pass_rate,
"severity": r.severity,
"timestamp": r.timestamp,
"details": json.dumps(r.details)
}
for r in self.results
]
results_df = self.spark.createDataFrame(results_data)
results_df.write.format("delta").mode("append").save(output_path)
Pattern 3: DLT Quality Monitoring
Quality Metrics Collection:
"""
DLT pipeline with comprehensive quality monitoring.
"""
import dlt
from pyspark.sql.functions import *
from typing import Dict, Any
class DLTQualityMonitor:
"""Monitor data quality in DLT pipelines."""
@staticmethod
def create_quality_tables():
"""Create tables with quality monitoring."""
@dlt.table(
name="quality_metrics",
comment="Quality metrics for all pipeline tables",
table_properties={
"quality": "monitoring",
"delta.enableChangeDataFeed": "true"
}
)
def quality_metrics():
"""Aggregate quality metrics across pipeline."""
return spark.sql("""
SELECT
current_timestamp() as metric_timestamp,
'bronze_orders' as table_name,
COUNT(*) as total_records,
COUNT_IF(order_id IS NULL) as null_order_ids,
COUNT_IF(amount <= 0) as invalid_amounts,
COUNT_IF(order_date > current_date()) as future_dates
FROM LIVE.bronze_orders
""")
@dlt.table(
name="orders_with_quality",
comment="Orders with quality scores"
)
@dlt.expect("valid_order_id", "order_id IS NOT NULL")
@dlt.expect_or_drop("positive_amount", "amount > 0")
@dlt.expect("valid_email", "email RLIKE '^[A-Za-z0-9._%+-]+@'")
def orders_with_quality():
return (
dlt.read_stream("bronze_orders")
.withColumn(
"quality_score",
when(col("order_id").isNotNull(), 1).otherwise(0) +
when(col("amount") > 0, 1).otherwise(0) +
when(col("email").rlike("^[A-Za-z0-9._%+-]+@"), 1).otherwise(0)
)
.withColumn(
"quality_tier",
when(col("quality_score") >= 3, "high")
.when(col("quality_score") >= 2, "medium")
.otherwise("low")
)
)
@staticmethod
def get_quality_report(event_log_path: str) -> Dict[str, Any]:
"""Generate quality report from DLT event log."""
events = spark.read.format("delta").load(event_log_path)
# Extract expectation metrics
expectations = (
events
.filter(col("event_type") == "flow_progress")
.select(
col("timestamp"),
col("origin.flow_name").alias("table_name"),
col("details.flow_progress.metrics.num_output_rows").alias("output_rows"),
explode(col("details.flow_progress.data_quality.expectations")).alias("expectation")
)
.select(
"timestamp",
"table_name",
"output_rows",
col("expectation.name").alias("expectation_name"),
col("expectation.passed_records").alias("passed"),
col("expectation.failed_records").alias("failed")
)
)
return {
"total_tables": expectations.select("table_name").distinct().count(),
"total_expectations": expectations.count(),
"failed_expectations": expectations.filter(col("failed") > 0).count(),
"details": expectations.collect()
}
Pattern 4: Data Profiling
Comprehensive Profiling:
"""
Data profiling utilities for quality assessment.
"""
from pyspark.sql import DataFrame, SparkSession
from pyspark.sql.functions import *
from typing import Dict, Any, List
class DataProfiler:
"""Profile datasets for quality assessment."""
def __init__(self, spark: SparkSession):
self.spark = spark
def profile_dataset(self, df: DataFrame) -> Dict[str, Any]:
"""Generate comprehensive data profile."""
profile = {
"record_count": df.count(),
"column_count": len(df.columns),
"columns": {}
}
for column in df.columns:
profile["columns"][column] = self.profile_column(df, column)
return profile
def profile_column(self, df: DataFrame, column: str) -> Dict[str, Any]:
"""Profile individual column."""
col_type = df.schema[column].dataType.simpleString()
base_stats = df.select(
count(col(column)).alias("count"),
count(when(col(column).isNull(), 1)).alias("null_count"),
countDistinct(col(column)).alias("distinct_count")
).first()
total_count = df.count()
profile = {
"type": col_type,
"count": base_stats["count"],
"null_count": base_stats["null_count"],
"null_percentage": base_stats["null_count"] / total_count * 100,
"distinct_count": base_stats["distinct_count"],
"cardinality": base_stats["distinct_count"] / total_count
}
# Numeric profiling
if col_type in ["int", "bigint", "double", "float", "decimal"]:
numeric_stats = df.select(
min(col(column)).alias("min"),
max(col(column)).alias("max"),
avg(col(column)).alias("mean"),
stddev(col(column)).alias("stddev")
).first()
profile.update({
"min": numeric_stats["min"],
"max": numeric_stats["max"],
"mean": numeric_stats["mean"],
"stddev": numeric_stats["stddev"]
})
# String profiling
if col_type == "string":
string_stats = df.select(
min(length(col(column))).alias("min_length"),
max(length(col(column))).alias("max_length"),
avg(length(col(column))).alias("avg_length")
).first()
profile.update({
"min_length": string_stats["min_length"],
"max_length": string_stats["max_length"],
"avg_length": string_stats["avg_length"]
})
# Top values
top_values = (
df.groupBy(col(column))
.count()
.orderBy(desc("count"))
.limit(10)
.collect()
)
profile["top_values"] = [
{"value": row[column], "count": row["count"]}
for row in top_values
]
return profile
def detect_anomalies(self, df: DataFrame, column: str) -> DataFrame:
"""Detect anomalies using IQR method."""
# Calculate quartiles
quantiles = df.stat.approxQuantile(column, [0.25, 0.75], 0.05)
q1, q3 = quantiles[0], quantiles[1]
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Flag anomalies
return df.withColumn(
f"{column}_anomaly",
when(
(col(column) < lower_bound) | (col(column) > upper_bound),
"anomaly"
).otherwise("normal")
)
def compare_distributions(
self,
df1: DataFrame,
df2: DataFrame,
column: str
) -> Dict[str, Any]:
"""Compare distributions between two datasets."""
stats1 = df1.select(
count(col(column)).alias("count"),
avg(col(column)).alias("mean"),
stddev(col(column)).alias("stddev")
).first()
stats2 = df2.select(
count(col(column)).alias("count"),
avg(col(column)).alias("mean"),
stddev(col(column)).alias("stddev")
).first()
return {
"dataset1": {
"count": stats1["count"],
"mean": stats1["mean"],
"stddev": stats1["stddev"]
},
"dataset2": {
"count": stats2["count"],
"mean": stats2["mean"],
"stddev": stats2["stddev"]
},
"mean_difference": abs(stats1["mean"] - stats2["mean"]),
"stddev_difference": abs(stats1["stddev"] - stats2["stddev"])
}
Best Practices
1. Quality Rule Organization
/quality/
├── rules/
│ ├── completeness_rules.py
│ ├── accuracy_rules.py
│ └── business_rules.py
├── suites/
│ ├── customer_suite.py
│ └── order_suite.py
└── monitors/
└── pipeline_monitor.py
2. Layered Quality Approach
Bronze: Schema and format validation
@dlt.expect("valid_schema", "all required columns present")
Silver: Business rule validation
@dlt.expect_or_drop("valid_business_key", "customer_id IS NOT NULL")
Gold: Aggregate and metric validation
@dlt.expect("reasonable_totals", "daily_revenue < 10000000")
3. Quality Metrics
Track these key metrics:
- Completeness rate (% non-null)
- Accuracy rate (% matching patterns)
- Consistency rate (% within ranges)
- Uniqueness rate (% unique keys)
- Timeliness (data freshness)
- Validity (% passing business rules)
4. Alerting Strategy
def check_quality_thresholds(quality_results: Dict[str, Any]) -> None:
"""Alert on quality threshold violations."""
if quality_results["pass_rate"] < 95:
send_alert(
severity="high",
message=f"Quality pass rate {quality_results['pass_rate']}% below threshold"
)
if quality_results["has_critical_failures"]:
send_alert(
severity="critical",
message="Critical quality rules failed"
)
Complete Examples
See /examples/ directory for:
customer_data_validation.py: Complete customer data quality suitepipeline_quality_monitoring.py: DLT pipeline with quality monitoring
Common Pitfalls to Avoid
Don't:
- Validate everything (focus on critical fields)
- Use only warning-level checks
- Ignore quality metrics over time
- Hard-code validation thresholds
- Skip profiling new data sources
Do:
- Prioritize rules by business impact
- Mix enforcement levels appropriately
- Track quality trends
- Make thresholds configurable
- Profile before implementing rules
Related Skills
delta-live-tables: DLT expectationstesting-patterns: Quality testingdata-products: Data contractsmedallion-architecture: Layer-specific quality