| name | medallion-architecture |
| description | Bronze/Silver/Gold layer design patterns and templates for building scalable data lakehouse architectures. Includes incremental processing, data quality checks, and optimization strategies. |
| triggers | medallion architecture, bronze silver gold, data lakehouse layers, multi-hop architecture |
| category | architecture |
Medallion Architecture Skill
Overview
The medallion architecture (also called multi-hop architecture) is a design pattern for organizing data in a lakehouse using three progressive layers:
- Bronze (Raw): Ingested data in its original format
- Silver (Refined): Cleansed and conformed data
- Gold (Curated): Business-level aggregates and features
When to Use This Skill
Use this skill when you need to:
- Design a new data pipeline with proper layering
- Migrate from traditional ETL to lakehouse architecture
- Implement incremental processing patterns
- Build a scalable data platform
- Ensure data quality at each layer
Architecture Principles
1. Bronze Layer (Raw)
Purpose: Store raw data exactly as received from source systems
Characteristics:
- Immutable historical record
- Schema-on-read approach
- Metadata enrichment (_ingested_at, _source_file)
- Minimal transformations
- Full audit trail
Use Cases:
- Data recovery
- Reprocessing requirements
- Audit compliance
- Debugging data issues
2. Silver Layer (Refined)
Purpose: Cleansed, validated, and standardized data
Characteristics:
- Schema enforcement
- Data quality checks
- Deduplication
- Standardization
- Type conversions
- Business rules applied
Use Cases:
- Downstream analytics
- Feature engineering
- Data science modeling
- Operational reporting
3. Gold Layer (Curated)
Purpose: Business-level aggregates optimized for consumption
Characteristics:
- Highly aggregated
- Optimized for queries
- Business KPIs
- Feature tables
- Production-ready datasets
Use Cases:
- Dashboards and BI
- ML model serving
- Real-time applications
- Executive reporting
Implementation Patterns
Pattern 1: Batch Processing
Bronze Layer:
def ingest_to_bronze(source_path: str, target_table: str):
"""Ingest raw data to Bronze layer."""
df = (spark.read
.format("cloudFiles")
.option("cloudFiles.format", "parquet")
.load(source_path)
.withColumn("_ingested_at", current_timestamp())
.withColumn("_source_file", input_file_name())
)
(df.write
.format("delta")
.mode("append")
.option("mergeSchema", "true")
.saveAsTable(target_table)
)
Silver Layer:
def process_to_silver(bronze_table: str, silver_table: str):
"""Transform Bronze to Silver with quality checks."""
bronze_df = spark.read.table(bronze_table)
silver_df = (bronze_df
.dropDuplicates(["id"])
.filter(col("id").isNotNull())
.withColumn("email", lower(trim(col("email"))))
.withColumn("created_date", to_date(col("created_at")))
.withColumn("quality_score",
when(col("email").rlike(r"^[\w\.-]+@[\w\.-]+\.\w+$"), 1.0)
.otherwise(0.5)
)
)
(silver_df.write
.format("delta")
.mode("overwrite")
.saveAsTable(silver_table)
)
Gold Layer:
def aggregate_to_gold(silver_table: str, gold_table: str):
"""Aggregate Silver to Gold business metrics."""
silver_df = spark.read.table(silver_table)
gold_df = (silver_df
.groupBy("customer_segment", "region")
.agg(
count("*").alias("customer_count"),
sum("lifetime_value").alias("total_ltv"),
avg("quality_score").alias("avg_quality")
)
.withColumn("updated_at", current_timestamp())
)
(gold_df.write
.format("delta")
.mode("overwrite")
.saveAsTable(gold_table)
)
Pattern 2: Incremental Processing
Bronze (Streaming):
(spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", "json")
.load(source_path)
.withColumn("_ingested_at", current_timestamp())
.writeStream
.format("delta")
.option("checkpointLocation", checkpoint_path)
.trigger(availableNow=True)
.toTable(bronze_table)
)
Silver (Incremental Merge):
from delta.tables import DeltaTable
def incremental_silver_merge(bronze_table: str, silver_table: str, watermark: str):
"""Incrementally merge new Bronze data into Silver."""
# Get new records since last watermark
new_records = (spark.read.table(bronze_table)
.filter(col("_ingested_at") > watermark)
)
# Transform
transformed = transform_to_silver(new_records)
# Merge into Silver
silver = DeltaTable.forName(spark, silver_table)
(silver.alias("target")
.merge(
transformed.alias("source"),
"target.id = source.id"
)
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute()
)
Data Quality Patterns
Quality Checks at Each Layer
Bronze:
- File completeness check
- Row count validation
- Schema drift detection
Silver:
- Null value checks
- Data type validation
- Business rule validation
- Referential integrity
- Duplicate detection
Gold:
- Aggregate accuracy
- KPI threshold checks
- Trend anomaly detection
- Completeness validation
Quality Check Implementation
def validate_silver_quality(table_name: str) -> Dict[str, bool]:
"""Run quality checks on Silver table."""
df = spark.read.table(table_name)
checks = {
"no_null_ids": df.filter(col("id").isNull()).count() == 0,
"valid_emails": df.filter(
~col("email").rlike(r"^[\w\.-]+@[\w\.-]+\.\w+$")
).count() == 0,
"no_duplicates": df.count() == df.select("id").distinct().count(),
"within_date_range": df.filter(
(col("created_date") < "2020-01-01") |
(col("created_date") > current_date())
).count() == 0
}
return checks
Optimization Strategies
Bronze Layer Optimization
-- Partition by ingestion date
CREATE TABLE bronze.raw_events
USING delta
PARTITIONED BY (ingestion_date)
AS SELECT *, current_date() as ingestion_date FROM source;
-- Enable auto-optimize
ALTER TABLE bronze.raw_events
SET TBLPROPERTIES (
'delta.autoOptimize.optimizeWrite' = 'true',
'delta.autoOptimize.autoCompact' = 'true'
);
Silver Layer Optimization
-- Z-ORDER for common filters
OPTIMIZE silver.customers
ZORDER BY (customer_segment, region, created_date);
-- Enable Change Data Feed
ALTER TABLE silver.customers
SET TBLPROPERTIES (delta.enableChangeDataFeed = true);
Gold Layer Optimization
-- Liquid clustering for query performance
CREATE TABLE gold.customer_metrics
USING delta
CLUSTER BY (customer_segment, date)
AS SELECT * FROM aggregated_metrics;
-- Optimize and vacuum
OPTIMIZE gold.customer_metrics;
VACUUM gold.customer_metrics RETAIN 168 HOURS;
Complete Example
See /templates/bronze-silver-gold/ for a complete implementation including:
- Project structure
- Bronze ingestion scripts
- Silver transformation logic
- Gold aggregation queries
- Data quality tests
- Deployment configuration
Best Practices
- Idempotency: Ensure pipelines can be re-run safely
- Incrementality: Process only new/changed data
- Quality Gates: Block bad data from progressing
- Schema Evolution: Handle schema changes gracefully
- Monitoring: Track pipeline health and data quality
- Documentation: Document data lineage and transformations
- Testing: Unit test transformations, integration test pipelines
Common Pitfalls to Avoid
❌ Don't:
- Mix transformation logic across layers
- Skip Bronze layer to "save storage"
- Over-aggregate too early
- Ignore data quality in Silver
- Hard-code business logic in Bronze
✅ Do:
- Keep Bronze immutable
- Enforce quality in Silver
- Optimize Gold for consumption
- Use incremental processing
- Implement proper monitoring
Related Skills
delta-live-tables: Declarative pipeline orchestrationdata-quality: Great Expectations integrationtesting-patterns: Pipeline testing strategiescicd-workflows: Deployment automation