| name | data-analysis |
| description | Comprehensive data analysis skill for CSV files using Python and pandas |
| tags | python, pandas, data-analysis, visualization |
| version | 1.0 |
| author | pydantic-deep |
Data Analysis Skill
You are a data analysis expert. When this skill is loaded, follow these guidelines for analyzing data.
Workflow
- Load the data: Use pandas to read CSV files
- Explore the data: Check shape, dtypes, missing values, and basic statistics
- Clean if needed: Handle missing values, duplicates, and outliers
- Analyze: Perform requested analysis (aggregations, correlations, trends)
- Visualize: Create charts using matplotlib when appropriate
- Report: Summarize findings clearly
Code Templates
Loading Data
import pandas as pd
import matplotlib.pyplot as plt
# Load CSV
df = pd.read_csv('/uploads/filename.csv')
# Basic info
print(f"Shape: {df.shape}")
print(f"Columns: {list(df.columns)}")
print(df.dtypes)
print(df.describe())
Handling Missing Values
# Check missing values
print(df.isnull().sum())
# Fill or drop
df = df.dropna() # or
df = df.fillna(df.mean()) # for numeric columns
Basic Analysis
# Group by and aggregate
summary = df.groupby('category').agg({
'value': ['mean', 'sum', 'count'],
'other_col': 'first'
})
# Correlation
correlation = df.select_dtypes(include='number').corr()
Visualization with Matplotlib
Always save charts to /workspace/ directory so they can be viewed in the app.
import matplotlib.pyplot as plt
import seaborn as sns
# Set style for better looking charts
plt.style.use('seaborn-v0_8-darkgrid')
sns.set_palette("husl")
Bar Chart
plt.figure(figsize=(10, 6))
df.groupby('category')['value'].sum().plot(kind='bar', color='steelblue', edgecolor='black')
plt.title('Value by Category', fontsize=14, fontweight='bold')
plt.xlabel('Category')
plt.ylabel('Total Value')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig('/workspace/bar_chart.png', dpi=150, bbox_inches='tight')
plt.close()
Line Chart (Time Series)
plt.figure(figsize=(12, 6))
plt.plot(df['date'], df['value'], marker='o', linewidth=2, markersize=4)
plt.title('Value Over Time', fontsize=14, fontweight='bold')
plt.xlabel('Date')
plt.ylabel('Value')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('/workspace/line_chart.png', dpi=150, bbox_inches='tight')
plt.close()
Pie Chart
plt.figure(figsize=(8, 8))
data = df.groupby('category')['value'].sum()
plt.pie(data, labels=data.index, autopct='%1.1f%%', startangle=90,
colors=sns.color_palette('pastel'))
plt.title('Distribution by Category', fontsize=14, fontweight='bold')
plt.tight_layout()
plt.savefig('/workspace/pie_chart.png', dpi=150, bbox_inches='tight')
plt.close()
Histogram
plt.figure(figsize=(10, 6))
plt.hist(df['value'], bins=20, color='steelblue', edgecolor='black', alpha=0.7)
plt.title('Value Distribution', fontsize=14, fontweight='bold')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.axvline(df['value'].mean(), color='red', linestyle='--', label=f'Mean: {df["value"].mean():.2f}')
plt.legend()
plt.tight_layout()
plt.savefig('/workspace/histogram.png', dpi=150, bbox_inches='tight')
plt.close()
Scatter Plot
plt.figure(figsize=(10, 6))
plt.scatter(df['x'], df['y'], alpha=0.6, c=df['category'].astype('category').cat.codes, cmap='viridis')
plt.title('X vs Y Relationship', fontsize=14, fontweight='bold')
plt.xlabel('X')
plt.ylabel('Y')
plt.colorbar(label='Category')
plt.tight_layout()
plt.savefig('/workspace/scatter.png', dpi=150, bbox_inches='tight')
plt.close()
Heatmap (Correlation Matrix)
plt.figure(figsize=(10, 8))
correlation = df.select_dtypes(include='number').corr()
sns.heatmap(correlation, annot=True, cmap='coolwarm', center=0,
fmt='.2f', square=True, linewidths=0.5)
plt.title('Correlation Matrix', fontsize=14, fontweight='bold')
plt.tight_layout()
plt.savefig('/workspace/heatmap.png', dpi=150, bbox_inches='tight')
plt.close()
Multiple Subplots
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# Plot 1: Bar chart
df.groupby('category')['value'].sum().plot(kind='bar', ax=axes[0, 0], color='steelblue')
axes[0, 0].set_title('Total by Category')
axes[0, 0].tick_params(axis='x', rotation=45)
# Plot 2: Line chart
df.groupby('date')['value'].mean().plot(ax=axes[0, 1], marker='o')
axes[0, 1].set_title('Average Over Time')
# Plot 3: Histogram
axes[1, 0].hist(df['value'], bins=15, color='green', alpha=0.7)
axes[1, 0].set_title('Value Distribution')
# Plot 4: Box plot
df.boxplot(column='value', by='category', ax=axes[1, 1])
axes[1, 1].set_title('Value by Category')
plt.suptitle('') # Remove auto-generated title
plt.tight_layout()
plt.savefig('/workspace/dashboard.png', dpi=150, bbox_inches='tight')
plt.close()
Interactive HTML Charts (Plotly)
For interactive charts that can be viewed in the browser:
import plotly.express as px
import plotly.graph_objects as go
# Interactive bar chart
fig = px.bar(df, x='category', y='value', color='category',
title='Value by Category')
fig.write_html('/workspace/interactive_bar.html')
# Interactive line chart
fig = px.line(df, x='date', y='value', title='Value Over Time',
markers=True)
fig.write_html('/workspace/interactive_line.html')
# Interactive scatter with hover
fig = px.scatter(df, x='x', y='y', color='category', size='value',
hover_data=['name'], title='Interactive Scatter')
fig.write_html('/workspace/interactive_scatter.html')
# Interactive pie chart
fig = px.pie(df, values='value', names='category', title='Distribution')
fig.write_html('/workspace/interactive_pie.html')
Best Practices
- Always show the first few rows with
df.head()to verify data loaded correctly - Check data types before operations - convert if necessary
- Handle edge cases - empty data, single values, etc.
- Use descriptive variable names in analysis code
- Save visualizations to
/workspace/directory - Print intermediate results so the user can follow along
Output Format
When presenting results:
- Use clear section headers
- Include relevant statistics
- Explain what the numbers mean
- Provide actionable insights when possible