Claude Code Plugins

Community-maintained marketplace

Feedback
34
0

>

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name smart-routing
description Intelligent request routing for /toh command. Analyzes user intent, assesses confidence, detects IDE environment, and routes to the appropriate agent(s). Memory-first approach ensures context awareness. Triggers: /toh command, natural language requests, ambiguous inputs.

Smart Routing Skill

Intelligent routing engine for the /toh smart command. Routes any natural language request to the right agent(s).


๐Ÿง  Routing Pipeline

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    USER REQUEST                                 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                                 โ”‚
โ”‚  STEP 0: MEMORY CHECK (ALWAYS FIRST!)                          โ”‚
โ”‚  โ”œโ”€โ”€ Read .toh/memory/active.md                                โ”‚
โ”‚  โ”œโ”€โ”€ Read .toh/memory/summary.md                               โ”‚
โ”‚  โ”œโ”€โ”€ Read .toh/memory/decisions.md                             โ”‚
โ”‚  โ””โ”€โ”€ Build context understanding                               โ”‚
โ”‚                                                                 โ”‚
โ”‚  STEP 1: INTENT CLASSIFICATION                                 โ”‚
โ”‚  โ”œโ”€โ”€ Pattern matching (keywords, phrases)                      โ”‚
โ”‚  โ”œโ”€โ”€ Context inference (from memory)                           โ”‚
โ”‚  โ””โ”€โ”€ Scope detection (simple/complex)                          โ”‚
โ”‚                                                                 โ”‚
โ”‚  STEP 2: CONFIDENCE SCORING                                    โ”‚
โ”‚  โ”œโ”€โ”€ HIGH (80%+) โ†’ Direct execution                            โ”‚
โ”‚  โ”œโ”€โ”€ MEDIUM (50-80%) โ†’ Plan Agent first                        โ”‚
โ”‚  โ””โ”€โ”€ LOW (<50%) โ†’ Ask for clarification                        โ”‚
โ”‚                                                                 โ”‚
โ”‚  STEP 3: IDE DETECTION                                         โ”‚
โ”‚  โ”œโ”€โ”€ Claude Code โ†’ Parallel execution enabled                  โ”‚
โ”‚  โ””โ”€โ”€ Other IDEs โ†’ Sequential execution only                    โ”‚
โ”‚                                                                 โ”‚
โ”‚  STEP 4: AGENT SELECTION & EXECUTION                           โ”‚
โ”‚  โ””โ”€โ”€ Route to appropriate agent(s)                             โ”‚
โ”‚                                                                 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ“Š Intent Classification Matrix

Primary Patterns โ†’ Agent Mapping

Pattern Category Keywords (EN) Keywords (TH) Primary Agent Confidence
Create UI create, add, make, build + page/component/UI เธชเธฃเน‰เธฒเธ‡, เน€เธžเธดเนˆเธก, เธ—เธณ + เธซเธ™เน‰เธฒ/component UI Agent HIGH
Add Logic logic, state, function, hook, validation logic, state, function, เน€เธžเธดเนˆเธก logic Dev Agent HIGH
Fix Bug bug, error, broken, fix, not working bug, error, เธžเธฑเธ‡, เน„เธกเนˆเธ—เธณเธ‡เธฒเธ™, เนเธเน‰ Fix Agent HIGH
Improve Design prettier, beautiful, design, polish, style เธชเธงเธข, design, เธ›เธฃเธฑเธš design Design Agent HIGH
Testing test, check, verify test, เธ—เธ”เธชเธญเธš, เน€เธŠเน‡เธ„ Test Agent HIGH
Connect Backend connect, database, Supabase, API, backend เน€เธŠเธทเนˆเธญเธก, database, Supabase Connect Agent HIGH
Deploy deploy, ship, production, publish deploy, ship, เธ‚เธถเน‰เธ™ production Ship Agent HIGH
LINE Platform LINE, LIFF, Mini App LINE, LIFF LINE Agent HIGH
Mobile Platform mobile, iOS, Android, Expo, React Native mobile, เธกเธทเธญเธ–เธทเธญ Mobile Agent HIGH
New Project new project, start, build app, create system project เนƒเธซเธกเนˆ, เธชเธฃเน‰เธฒเธ‡ app Vibe Agent HIGH
Planning plan, analyze, PRD, architecture เธงเธฒเธ‡เนเธœเธ™, เธงเธดเน€เธ„เธฃเธฒเธฐเธซเนŒ Plan Agent HIGH
AI/Prompt prompt, AI, chatbot, system prompt prompt, AI, chatbot Dev Agent + prompt-optimizer HIGH
Continue continue, resume, go on เธ—เธณเธ•เนˆเธญ, เธ•เนˆเธญ Memory โ†’ Last Agent MEDIUM
Complex Request Multiple features, system, e-commerce, etc. เธฃเธฐเธšเธš + เธซเธฅเธฒเธข features Plan Agent MEDIUM
Vague Request help, fix it, make better (without context) เธŠเนˆเธงเธขเธ”เน‰เธงเธข, เนเธเน‰เธ—เธต Ask Clarification LOW

๐ŸŽฏ Confidence Scoring Algorithm

interface ConfidenceFactors {
  keywordMatch: number;      // 0-40 points
  contextClarity: number;    // 0-30 points
  memorySupport: number;     // 0-20 points
  scopeDefinition: number;   // 0-10 points
}

function calculateConfidence(request: string, memory: Memory): number {
  let score = 0;
  
  // Keyword matching (0-40 points)
  // Strong match with primary patterns = 40
  // Partial match = 20
  // No match = 0
  score += keywordMatchScore(request);
  
  // Context clarity (0-30 points)
  // Specific page/component mentioned = 30
  // General area mentioned = 15
  // No specifics = 0
  score += contextClarityScore(request);
  
  // Memory support (0-20 points)
  // Request relates to active task = 20
  // Request relates to project = 10
  // No memory context = 0
  score += memorySupportScore(request, memory);
  
  // Scope definition (0-10 points)
  // Single clear task = 10
  // Multiple related tasks = 5
  // Unclear scope = 0
  score += scopeDefinitionScore(request);
  
  return score; // 0-100
}

// Thresholds
const HIGH_CONFIDENCE = 80;    // Execute directly
const MEDIUM_CONFIDENCE = 50;  // Route to Plan Agent
// Below 50 = Ask for clarification

๐Ÿ–ฅ๏ธ IDE Detection

Detection Method

function detectIDE(): 'claude-code' | 'cursor' | 'gemini' | 'codex' | 'unknown' {
  // Check for IDE-specific markers
  
  // Claude Code detection
  if (hasClaudeCodeMarkers()) {
    return 'claude-code';
  }
  
  // Cursor detection
  if (hasCursorRules()) {
    return 'cursor';
  }
  
  // Gemini CLI detection
  if (hasGeminiConfig()) {
    return 'gemini';
  }
  
  // Codex CLI detection
  if (hasCodexConfig()) {
    return 'codex';
  }
  
  return 'unknown';
}

Execution Strategy by IDE

IDE Multi-Agent Strategy Reason
Claude Code Parallel (spawn sub-agents) Native support for parallel tool calls
Cursor Sequential More predictable, follows diff flow
Gemini CLI Sequential Safer execution model
Codex CLI Sequential Linear task processing
Unknown Sequential (default) Safe fallback

๐Ÿ”„ Routing Decision Tree

Request arrives
      โ”‚
      โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 1. Load Memory Context              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
      โ”‚
      โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 2. Is request "continue"/"เธ—เธณเธ•เนˆเธญ"?   โ”‚
โ”œโ”€โ”€ YES โ†’ Read memory, resume task   โ”‚
โ””โ”€โ”€ NO โ†’ Continue analysis           โ”‚
      โ”‚
      โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ 3. Calculate Confidence Score       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
      โ”‚
      โ”œโ”€โ”€ Score >= 80 (HIGH)
      โ”‚   โ””โ”€โ†’ Select agent based on intent
      โ”‚       โ””โ”€โ†’ Execute directly
      โ”‚
      โ”œโ”€โ”€ Score 50-79 (MEDIUM)
      โ”‚   โ””โ”€โ†’ Route to Plan Agent
      โ”‚       โ””โ”€โ†’ Plan Agent analyzes & routes
      โ”‚
      โ””โ”€โ”€ Score < 50 (LOW)
          โ””โ”€โ†’ Ask clarifying question
              โ””โ”€โ†’ Wait for user response

๐Ÿ“‹ Clarification Patterns

When to Ask

Situation Example Action
No verb/action "the login" Ask: "What would you like to do with login?"
No target "make it work" Ask: "Which page/component should I fix?"
Multiple interpretations "improve it" Ask: "Design, performance, or features?"
Missing context + no memory "fix it" Ask: "What's broken? Describe the issue."

When NOT to Ask

Situation Example Action
Clear intent "create login page" Execute directly
Memory provides context "continue" + active task exists Resume from memory
Reasonable default exists "add a button" Add to current page context

๐ŸŽจ Skill Loading by Intent

Detected Intent Skills to Load
New Project vibe-orchestrator, design-mastery, business-context, response-format
Create UI ui-first-builder, design-excellence, response-format
Add Logic dev-engineer, error-handling, response-format
Fix Bug debug-protocol, error-handling, response-format
Connect Backend backend-engineer, integrations, response-format
Improve Design design-excellence, design-mastery, response-format
AI/Chatbot prompt-optimizer, dev-engineer, response-format
Testing test-engineer, error-handling, response-format
Planning plan-orchestrator, business-context, response-format

Note: response-format skill is ALWAYS loaded for proper output formatting.


๐Ÿ’พ Memory Integration

Pre-Routing Memory Check

Before routing, ALWAYS:
1. Read .toh/memory/active.md
   - Current task context
   - In-progress work
   - Blockers
   
2. Read .toh/memory/summary.md
   - Project overview
   - Completed features
   - Tech stack used
   
3. Read .toh/memory/decisions.md
   - Past architectural decisions
   - Design choices
   - Naming conventions

Use memory to:
- Boost confidence (if request matches active work)
- Provide context (for ambiguous "it" references)
- Maintain consistency (follow established patterns)

Post-Execution Memory Save

After routing completes, ALWAYS:
1. Update .toh/memory/active.md
   - Mark completed items
   - Update current focus
   - Set next steps
   
2. Add to .toh/memory/decisions.md
   - If new decisions were made
   
3. Update .toh/memory/summary.md
   - If feature was completed

โš ๏ธ NEVER finish without saving memory!

๐Ÿ“Œ Examples

Example 1: High Confidence โ†’ Direct

Request: "/toh เธชเธฃเน‰เธฒเธ‡เธซเธ™เน‰เธฒ dashboard"

Analysis:
- Keyword match: "เธชเธฃเน‰เธฒเธ‡" + "เธซเธ™เน‰เธฒ" = Create UI (40 pts)
- Context clarity: "dashboard" = specific page (30 pts)
- Memory: Project has other pages (15 pts)
- Scope: Single page (10 pts)
Total: 95 pts = HIGH

Route: UI Agent (direct)

Example 2: Medium Confidence โ†’ Plan First

Request: "/toh build e-commerce"

Analysis:
- Keyword match: "build" = Create (40 pts)
- Context clarity: "e-commerce" = general concept (10 pts)
- Memory: New project (0 pts)
- Scope: Multiple features (0 pts)
Total: 50 pts = MEDIUM

Route: Plan Agent first โ†’ then execute plan

Example 3: Low Confidence โ†’ Ask

Request: "/toh fix it"

Analysis:
- Keyword match: "fix" (20 pts)
- Context clarity: "it" = unclear (0 pts)
- Memory: No recent bugs (0 pts)
- Scope: Unknown (0 pts)
Total: 20 pts = LOW

Action: Ask "What would you like me to fix? Please describe the issue."

โš ๏ธ Critical Rules

  1. Memory ALWAYS first - Never route without checking context
  2. Confidence drives action - Trust the scoring system
  3. Plan Agent is your friend - When in doubt, route to Plan
  4. IDE awareness matters - Parallel only in Claude Code
  5. response-format always loaded - Every response needs 3 sections

Smart Routing Skill v1.0.0 - Intelligent Request Routing Engine