| name | lmstudio-orchestrator |
| description | Deterministic multi-agent orchestration system for LMStudio enabling constraint-driven agent composition, semantic field navigation, and thermodynamic resource allocation. Use when orchestrating local LLM swarms, building multi-agent systems with validation, implementing constraint-based configurations, or requiring deterministic agent composition from discovered model states. |
LMStudio Orchestrator
Constraint-driven orchestration system that transforms LMStudio into a deterministic multi-agent platform with semantic field navigation and compositional intelligence.
Core Paradigm
This skill operates on three fundamental principles:
- Discovery Before Configuration: Always introspect available resources before building
- Constraints Enable Composition: Invalid states are unpresentable through validation
- Declarative Over Imperative: Users specify intent, system determines implementation
Phase 1: Discovery & Introspection
Before ANY orchestration, discover the current state:
from scripts.discovery import LMStudioDiscovery
# Discover available resources
discovery = LMStudioDiscovery()
state = await discovery.introspect()
# Returns:
{
"endpoint": "http://localhost:1234/v1",
"models": ["qwen2.5-coder-32b", "llama-3.3-70b", ...],
"capabilities": {"chat": True, "embeddings": True, "tools": True},
"constraints": {"max_context": 32768, "max_parallel": 10}
}
Phase 2: Constraint-Based Configuration
Build configurations that cannot fail:
from scripts.constraints import ConfigurationSchema, AgentRegistry
# Define constraints
schema = ConfigurationSchema()
schema.add_constraint('agents.count', lambda x: 1 <= x <= 20)
schema.add_constraint('agents.*.temperature', lambda x: 0.0 <= x <= 1.0)
schema.add_constraint('strategy', lambda x: x in VALID_STRATEGIES)
# Compose from templates
registry = AgentRegistry()
agent = registry.create_agent(
role="researcher", # Constrained to valid roles
model=state.models[0], # From discovered models
temperature=0.7 # Validated against constraints
)
Phase 3: Compositional Orchestration
Strategy 1: Declarative Composition
User declares intent, system composes implementation:
from scripts.composer import CombinatorialComposer
composer = CombinatorialComposer(registry, strategies)
swarm = composer.compose_swarm(
query="Analyze quantum computing architectures",
available_models=state.models,
constraints={"max_agents": 5, "timeout": 120}
)
# System automatically:
# 1. Analyzes query → requirements
# 2. Selects roles based on requirements
# 3. Assigns models to roles optimally
# 4. Chooses execution strategy
# 5. Validates entire configuration
Strategy 2: Semantic Field Navigation
Navigate solution spaces through resonance:
from scripts.semantic import SemanticNavigator
navigator = SemanticNavigator(orchestrator)
path = await navigator.find_resonance_path(
start_concept="database optimization",
target_outcome="10x performance",
exploration_depth=5
)
# Executes agents along semantic gradient
for node in path.nodes:
agent = composer.create_for_concept(node.concept)
result = await agent.execute(node.prompt)
Strategy 3: Thermodynamic Resource Allocation
Minimize energy across available resources:
from scripts.thermodynamic import ThermodynamicScheduler
scheduler = ThermodynamicScheduler(resource_monitor)
execution_plan = scheduler.optimize(
tasks=task_list,
constraints={
"max_vram": 0.9,
"preserve_responsiveness": True,
"energy_function": lambda agent: agent.tokens / agent.requests
}
)
Execution Strategies
All strategies are constraint-validated before execution:
PARALLEL
swarm.orchestrate(task, strategy="parallel")
# Constraints: min_agents=1, max_agents=20, timeout=60
CONSENSUS
swarm.orchestrate(task, strategy="consensus", threshold=0.8)
# Constraints: min_agents=3, max_agents=15, rounds=2
HIERARCHICAL
swarm.orchestrate(task, strategy="hierarchical", coordinator="architect")
# Constraints: min_agents=2, requires coordinator role
SEMANTIC
swarm.orchestrate(task, strategy="semantic", resonance_threshold=0.7)
# Constraints: requires embedding support
COMBINATORIAL
swarm.orchestrate(task, strategy="combinatorial", combinations="pairwise")
# Constraints: min_agents=2, max_agents=16
Agent Templates
Agents are created from validated templates:
researcher:
temperature: [0.7, 0.9]
capabilities: [search, analyze, synthesize]
preferred_models: [llama-3.3-70b, qwen2.5-72b]
analyst:
temperature: [0.3, 0.5]
capabilities: [decompose, structure, categorize]
preferred_models: [qwen2.5-72b, deepseek-r1]
critic:
temperature: [0.2, 0.4]
capabilities: [validate, challenge, verify]
preferred_models: [qwen2.5-72b, llama-3.3-70b]
Resource Monitoring
Real-time resource tracking with predictive allocation:
from scripts.monitor import ResourceMonitor
monitor = ResourceMonitor()
await monitor.start()
# Before spawning
availability = monitor.predict_availability("llama-3.3-70b")
if not availability["available"]:
# Use smaller model or wait
model = monitor.recommend_alternative()
# During execution
metrics = monitor.get_metrics()
# {vram_used: 45GB, tokens_per_sec: 127, active_agents: 5}
Web Interface
Launch the deterministic orchestration interface:
from scripts.interface import OrchestrationInterface
interface = OrchestrationInterface(
discovery=discovery,
composer=composer,
monitor=monitor
)
await interface.serve(port=8080)
# Access at http://localhost:8080
The interface provides:
- Real-time model discovery
- Constraint-validated agent spawning
- Semantic field visualization
- Resource usage monitoring
- Execution strategy selection
Error Recovery
All operations include deterministic error handling:
@with_constraints(
max_retries=3,
backoff="exponential",
fallback="smaller_model"
)
async def reliable_execution(task):
return await swarm.orchestrate(task)
Complete Example
from scripts.orchestrator import DeterministicOrchestrator
async def main():
# Phase 1: Discovery
orch = DeterministicOrchestrator()
await orch.discover()
# Phase 2: Composition
swarm = await orch.compose(
"Design a distributed cache with Redis",
constraints={"max_agents": 5}
)
# Phase 3: Execution
result = await swarm.execute()
# Result includes:
# - Final synthesis
# - Agent contributions
# - Consensus score
# - Resource usage
# - Execution trace
Validation Guarantees
Every configuration is validated before execution:
- Model Validation: Only discovered models can be used
- Role Validation: Agents must match template constraints
- Strategy Validation: Agent count must satisfy strategy requirements
- Resource Validation: VRAM requirements must be available
- Timeout Validation: Execution time within limits
Best Practices
- Always discover first - Never hardcode models or endpoints
- Compose declaratively - Let the system determine implementation
- Validate continuously - Check constraints at every step
- Monitor resources - Predict and prevent exhaustion
- Handle gracefully - Partial success over total failure
Troubleshooting
Discovery Fails
# Check LMStudio is running
scripts/check_lmstudio.sh
# Try manual discovery
scripts/discover.py --port 1234
Invalid Configuration
# Validate configuration
valid, errors = schema.validate(config)
for error in errors:
print(f"Constraint violation: {error}")
Resource Exhaustion
# Check available resources
availability = monitor.check_resources()
if availability["vram_available"] < required:
# Unload unused models
monitor.optimize_allocation()
References
- See
references/constraints.yamlfor all constraint definitions - See
references/templates.yamlfor agent templates - See
references/strategies.jsonfor execution strategies - See
scripts/for all implementation modules