| name | ReasoningBank with AgentDB |
| description | Implement ReasoningBank adaptive learning with AgentDB's 150x faster vector database. Includes trajectory tracking, verdict judgment, memory distillation, and pattern recognition. Use when building self-learning agents, optimizing decision-making, or implementing experience replay systems. |
ReasoningBank with AgentDB
What This Skill Does
Provides ReasoningBank adaptive learning patterns using AgentDB's high-performance backend (150x-12,500x faster). Enables agents to learn from experiences, judge outcomes, distill memories, and improve decision-making over time with 100% backward compatibility.
Performance: 150x faster pattern retrieval, 500x faster batch operations, <1ms memory access.
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow)
- Understanding of reinforcement learning concepts (optional)
Quick Start with CLI
Initialize ReasoningBank Database
# Initialize AgentDB for ReasoningBank
npx agentdb@latest init ./.agentdb/reasoningbank.db --dimension 1536
# Start MCP server for Claude Code integration
npx agentdb@latest mcp
claude mcp add agentdb npx agentdb@latest mcp
Migrate from Legacy ReasoningBank
# Automatic migration with validation
npx agentdb@latest migrate --source .swarm/memory.db
# Verify migration
npx agentdb@latest stats ./.agentdb/reasoningbank.db
Quick Start with API
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank with AgentDB
const rb = await createAgentDBAdapter({
dbPath: '.agentdb/reasoningbank.db',
enableLearning: true, // Enable learning plugins
enableReasoning: true, // Enable reasoning agents
cacheSize: 1000, // 1000 pattern cache
});
// Store successful experience
const query = "How to optimize database queries?";
const embedding = await computeEmbedding(query);
await rb.insertPattern({
id: '',
type: 'experience',
domain: 'database-optimization',
pattern_data: JSON.stringify({
embedding,
pattern: {
query,
approach: 'indexing + query optimization',
outcome: 'success',
metrics: { latency_reduction: 0.85 }
}
}),
confidence: 0.95,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
// Retrieve similar experiences with reasoning
const result = await rb.retrieveWithReasoning(embedding, {
domain: 'database-optimization',
k: 5,
useMMR: true, // Diverse results
synthesizeContext: true, // Rich context synthesis
});
console.log('Memories:', result.memories);
console.log('Context:', result.context);
console.log('Patterns:', result.patterns);
Core ReasoningBank Concepts
1. Trajectory Tracking
Track agent execution paths and outcomes:
// Record trajectory (sequence of actions)
const trajectory = {
task: 'optimize-api-endpoint',
steps: [
{ action: 'analyze-bottleneck', result: 'found N+1 query' },
{ action: 'add-eager-loading', result: 'reduced queries' },
{ action: 'add-caching', result: 'improved latency' }
],
outcome: 'success',
metrics: { latency_before: 2500, latency_after: 150 }
};
const embedding = await computeEmbedding(JSON.stringify(trajectory));
await rb.insertPattern({
id: '',
type: 'trajectory',
domain: 'api-optimization',
pattern_data: JSON.stringify({ embedding, pattern: trajectory }),
confidence: 0.9,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
2. Verdict Judgment
Judge whether a trajectory was successful:
// Retrieve similar past trajectories
const similar = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'api-optimization',
k: 10,
});
// Judge based on similarity to successful patterns
const verdict = similar.memories.filter(m =>
m.pattern.outcome === 'success' &&
m.similarity > 0.8
).length > 5 ? 'likely_success' : 'needs_review';
console.log('Verdict:', verdict);
console.log('Confidence:', similar.memories[0]?.similarity || 0);
3. Memory Distillation
Consolidate similar experiences into patterns:
// Get all experiences in domain
const experiences = await rb.retrieveWithReasoning(embedding, {
domain: 'api-optimization',
k: 100,
optimizeMemory: true, // Automatic consolidation
});
// Distill into high-level pattern
const distilledPattern = {
domain: 'api-optimization',
pattern: 'For N+1 queries: add eager loading, then cache',
success_rate: 0.92,
sample_size: experiences.memories.length,
confidence: 0.95
};
await rb.insertPattern({
id: '',
type: 'distilled-pattern',
domain: 'api-optimization',
pattern_data: JSON.stringify({
embedding: await computeEmbedding(JSON.stringify(distilledPattern)),
pattern: distilledPattern
}),
confidence: 0.95,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
Integration with Reasoning Agents
AgentDB provides 4 reasoning modules that enhance ReasoningBank:
1. PatternMatcher
Find similar successful patterns:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'problem-solving',
k: 10,
useMMR: true, // Maximal Marginal Relevance for diversity
});
// PatternMatcher returns diverse, relevant memories
result.memories.forEach(mem => {
console.log(`Pattern: ${mem.pattern.approach}`);
console.log(`Similarity: ${mem.similarity}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
2. ContextSynthesizer
Generate rich context from multiple memories:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'code-optimization',
synthesizeContext: true, // Enable context synthesis
k: 5,
});
// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 5 similar optimizations, the most effective approach
// involves profiling, identifying bottlenecks, and applying targeted
// improvements. Success rate: 87%"
3. MemoryOptimizer
Automatically consolidate and prune:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'testing',
optimizeMemory: true, // Enable automatic optimization
});
// MemoryOptimizer consolidates similar patterns and prunes low-quality
console.log('Optimizations:', result.optimizations);
// { consolidated: 15, pruned: 3, improved_quality: 0.12 }
4. ExperienceCurator
Filter by quality and relevance:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'debugging',
k: 20,
minConfidence: 0.8, // Only high-confidence experiences
});
// ExperienceCurator returns only quality experiences
result.memories.forEach(mem => {
console.log(`Confidence: ${mem.confidence}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
Legacy API Compatibility
AgentDB maintains 100% backward compatibility with legacy ReasoningBank:
import {
retrieveMemories,
judgeTrajectory,
distillMemories
} from 'agentic-flow/reasoningbank';
// Legacy API works unchanged (uses AgentDB backend automatically)
const memories = await retrieveMemories(query, {
domain: 'code-generation',
agent: 'coder'
});
const verdict = await judgeTrajectory(trajectory, query);
const newMemories = await distillMemories(
trajectory,
verdict,
query,
{ domain: 'code-generation' }
);
Performance Characteristics
- Pattern Search: 150x faster (100µs vs 15ms)
- Memory Retrieval: <1ms (with cache)
- Batch Insert: 500x faster (2ms vs 1s for 100 patterns)
- Trajectory Judgment: <5ms (including retrieval + analysis)
- Memory Distillation: <50ms (consolidate 100 patterns)
Advanced Patterns
Hierarchical Memory
Organize memories by abstraction level:
// Low-level: Specific implementation
await rb.insertPattern({
type: 'concrete',
domain: 'debugging/null-pointer',
pattern_data: JSON.stringify({
embedding,
pattern: { bug: 'NPE in UserService.getUser()', fix: 'Add null check' }
}),
confidence: 0.9,
// ...
});
// Mid-level: Pattern across similar cases
await rb.insertPattern({
type: 'pattern',
domain: 'debugging',
pattern_data: JSON.stringify({
embedding,
pattern: { category: 'null-pointer', approach: 'defensive-checks' }
}),
confidence: 0.85,
// ...
});
// High-level: General principle
await rb.insertPattern({
type: 'principle',
domain: 'software-engineering',
pattern_data: JSON.stringify({
embedding,
pattern: { principle: 'fail-fast with clear errors' }
}),
confidence: 0.95,
// ...
});
Multi-Domain Learning
Transfer learning across domains:
// Learn from backend optimization
const backendExperience = await rb.retrieveWithReasoning(embedding, {
domain: 'backend-optimization',
k: 10,
});
// Apply to frontend optimization
const transferredKnowledge = backendExperience.memories.map(mem => ({
...mem,
domain: 'frontend-optimization',
adapted: true,
}));
CLI Operations
Database Management
# Export trajectories and patterns
npx agentdb@latest export ./.agentdb/reasoningbank.db ./backup.json
# Import experiences
npx agentdb@latest import ./experiences.json
# Get statistics
npx agentdb@latest stats ./.agentdb/reasoningbank.db
# Shows: total patterns, domains, confidence distribution
Migration
# Migrate from legacy ReasoningBank
npx agentdb@latest migrate --source .swarm/memory.db --target .agentdb/reasoningbank.db
# Validate migration
npx agentdb@latest stats .agentdb/reasoningbank.db
Troubleshooting
Issue: Migration fails
# Check source database exists
ls -la .swarm/memory.db
# Run with verbose logging
DEBUG=agentdb:* npx agentdb@latest migrate --source .swarm/memory.db
Issue: Low confidence scores
// Enable context synthesis for better quality
const result = await rb.retrieveWithReasoning(embedding, {
synthesizeContext: true,
useMMR: true,
k: 10,
});
Issue: Memory growing too large
// Enable automatic optimization
const result = await rb.retrieveWithReasoning(embedding, {
optimizeMemory: true, // Consolidates similar patterns
});
// Or manually optimize
await rb.optimize();
Learn More
- AgentDB Integration: node_modules/agentic-flow/docs/AGENTDB_INTEGRATION.md
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- MCP Integration:
npx agentdb@latest mcp - Website: https://agentdb.ruv.io
Category: Machine Learning / Reinforcement Learning Difficulty: Intermediate Estimated Time: 20-30 minutes