Claude Code Plugins

Community-maintained marketplace

Feedback

kpi-dashboard-design

@wshobson/agents
23.1k
3

Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name kpi-dashboard-design
description Design effective KPI dashboards with metrics selection, visualization best practices, and real-time monitoring patterns. Use when building business dashboards, selecting metrics, or designing data visualization layouts.

KPI Dashboard Design

Comprehensive patterns for designing effective Key Performance Indicator (KPI) dashboards that drive business decisions.

When to Use This Skill

  • Designing executive dashboards
  • Selecting meaningful KPIs
  • Building real-time monitoring displays
  • Creating department-specific metrics views
  • Improving existing dashboard layouts
  • Establishing metric governance

Core Concepts

1. KPI Framework

Level Focus Update Frequency Audience
Strategic Long-term goals Monthly/Quarterly Executives
Tactical Department goals Weekly/Monthly Managers
Operational Day-to-day Real-time/Daily Teams

2. SMART KPIs

Specific: Clear definition
Measurable: Quantifiable
Achievable: Realistic targets
Relevant: Aligned to goals
Time-bound: Defined period

3. Dashboard Hierarchy

├── Executive Summary (1 page)
│   ├── 4-6 headline KPIs
│   ├── Trend indicators
│   └── Key alerts
├── Department Views
│   ├── Sales Dashboard
│   ├── Marketing Dashboard
│   ├── Operations Dashboard
│   └── Finance Dashboard
└── Detailed Drilldowns
    ├── Individual metrics
    └── Root cause analysis

Common KPIs by Department

Sales KPIs

Revenue Metrics:
  - Monthly Recurring Revenue (MRR)
  - Annual Recurring Revenue (ARR)
  - Average Revenue Per User (ARPU)
  - Revenue Growth Rate

Pipeline Metrics:
  - Sales Pipeline Value
  - Win Rate
  - Average Deal Size
  - Sales Cycle Length

Activity Metrics:
  - Calls/Emails per Rep
  - Demos Scheduled
  - Proposals Sent
  - Close Rate

Marketing KPIs

Acquisition:
  - Cost Per Acquisition (CPA)
  - Customer Acquisition Cost (CAC)
  - Lead Volume
  - Marketing Qualified Leads (MQL)

Engagement:
  - Website Traffic
  - Conversion Rate
  - Email Open/Click Rate
  - Social Engagement

ROI:
  - Marketing ROI
  - Campaign Performance
  - Channel Attribution
  - CAC Payback Period

Product KPIs

Usage:
  - Daily/Monthly Active Users (DAU/MAU)
  - Session Duration
  - Feature Adoption Rate
  - Stickiness (DAU/MAU)

Quality:
  - Net Promoter Score (NPS)
  - Customer Satisfaction (CSAT)
  - Bug/Issue Count
  - Time to Resolution

Growth:
  - User Growth Rate
  - Activation Rate
  - Retention Rate
  - Churn Rate

Finance KPIs

Profitability:
  - Gross Margin
  - Net Profit Margin
  - EBITDA
  - Operating Margin

Liquidity:
  - Current Ratio
  - Quick Ratio
  - Cash Flow
  - Working Capital

Efficiency:
  - Revenue per Employee
  - Operating Expense Ratio
  - Days Sales Outstanding
  - Inventory Turnover

Dashboard Layout Patterns

Pattern 1: Executive Summary

┌─────────────────────────────────────────────────────────────┐
│  EXECUTIVE DASHBOARD                        [Date Range ▼]  │
├─────────────┬─────────────┬─────────────┬─────────────────┤
│   REVENUE   │   PROFIT    │  CUSTOMERS  │    NPS SCORE    │
│   $2.4M     │    $450K    │    12,450   │       72        │
│   ▲ 12%     │    ▲ 8%     │    ▲ 15%    │     ▲ 5pts     │
├─────────────┴─────────────┴─────────────┴─────────────────┤
│                                                             │
│  Revenue Trend                    │  Revenue by Product     │
│  ┌───────────────────────┐       │  ┌──────────────────┐   │
│  │    /\    /\          │       │  │ ████████ 45%     │   │
│  │   /  \  /  \    /\   │       │  │ ██████   32%     │   │
│  │  /    \/    \  /  \  │       │  │ ████     18%     │   │
│  │ /            \/    \ │       │  │ ██        5%     │   │
│  └───────────────────────┘       │  └──────────────────┘   │
│                                                             │
├─────────────────────────────────────────────────────────────┤
│  🔴 Alert: Churn rate exceeded threshold (>5%)              │
│  🟡 Warning: Support ticket volume 20% above average        │
└─────────────────────────────────────────────────────────────┘

Pattern 2: SaaS Metrics Dashboard

┌─────────────────────────────────────────────────────────────┐
│  SAAS METRICS                     Jan 2024  [Monthly ▼]     │
├──────────────────────┬──────────────────────────────────────┤
│  ┌────────────────┐  │  MRR GROWTH                          │
│  │      MRR       │  │  ┌────────────────────────────────┐  │
│  │    $125,000    │  │  │                          /──   │  │
│  │     ▲ 8%       │  │  │                    /────/      │  │
│  └────────────────┘  │  │              /────/            │  │
│  ┌────────────────┐  │  │        /────/                  │  │
│  │      ARR       │  │  │   /────/                       │  │
│  │   $1,500,000   │  │  └────────────────────────────────┘  │
│  │     ▲ 15%      │  │  J  F  M  A  M  J  J  A  S  O  N  D  │
│  └────────────────┘  │                                      │
├──────────────────────┼──────────────────────────────────────┤
│  UNIT ECONOMICS      │  COHORT RETENTION                    │
│                      │                                      │
│  CAC:     $450       │  Month 1: ████████████████████ 100%  │
│  LTV:     $2,700     │  Month 3: █████████████████    85%   │
│  LTV/CAC: 6.0x       │  Month 6: ████████████████     80%   │
│                      │  Month 12: ██████████████      72%   │
│  Payback: 4 months   │                                      │
├──────────────────────┴──────────────────────────────────────┤
│  CHURN ANALYSIS                                             │
│  ┌──────────┬──────────┬──────────┬──────────────────────┐ │
│  │ Gross    │ Net      │ Logo     │ Expansion            │ │
│  │ 4.2%     │ 1.8%     │ 3.1%     │ 2.4%                 │ │
│  └──────────┴──────────┴──────────┴──────────────────────┘ │
└─────────────────────────────────────────────────────────────┘

Pattern 3: Real-time Operations

┌─────────────────────────────────────────────────────────────┐
│  OPERATIONS CENTER                    Live ● Last: 10:42:15 │
├────────────────────────────┬────────────────────────────────┤
│  SYSTEM HEALTH             │  SERVICE STATUS                │
│  ┌──────────────────────┐  │                                │
│  │   CPU    MEM    DISK │  │  ● API Gateway      Healthy    │
│  │   45%    72%    58%  │  │  ● User Service     Healthy    │
│  │   ███    ████   ███  │  │  ● Payment Service  Degraded   │
│  │   ███    ████   ███  │  │  ● Database         Healthy    │
│  │   ███    ████   ███  │  │  ● Cache            Healthy    │
│  └──────────────────────┘  │                                │
├────────────────────────────┼────────────────────────────────┤
│  REQUEST THROUGHPUT        │  ERROR RATE                    │
│  ┌──────────────────────┐  │  ┌──────────────────────────┐  │
│  │ ▁▂▃▄▅▆▇█▇▆▅▄▃▂▁▂▃▄▅ │  │  │ ▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁  │  │
│  └──────────────────────┘  │  └──────────────────────────┘  │
│  Current: 12,450 req/s     │  Current: 0.02%                │
│  Peak: 18,200 req/s        │  Threshold: 1.0%               │
├────────────────────────────┴────────────────────────────────┤
│  RECENT ALERTS                                              │
│  10:40  🟡 High latency on payment-service (p99 > 500ms)    │
│  10:35  🟢 Resolved: Database connection pool recovered     │
│  10:22  🔴 Payment service circuit breaker tripped          │
└─────────────────────────────────────────────────────────────┘

Implementation Patterns

SQL for KPI Calculations

-- Monthly Recurring Revenue (MRR)
WITH mrr_calculation AS (
    SELECT
        DATE_TRUNC('month', billing_date) AS month,
        SUM(
            CASE subscription_interval
                WHEN 'monthly' THEN amount
                WHEN 'yearly' THEN amount / 12
                WHEN 'quarterly' THEN amount / 3
            END
        ) AS mrr
    FROM subscriptions
    WHERE status = 'active'
    GROUP BY DATE_TRUNC('month', billing_date)
)
SELECT
    month,
    mrr,
    LAG(mrr) OVER (ORDER BY month) AS prev_mrr,
    (mrr - LAG(mrr) OVER (ORDER BY month)) / LAG(mrr) OVER (ORDER BY month) * 100 AS growth_pct
FROM mrr_calculation;

-- Cohort Retention
WITH cohorts AS (
    SELECT
        user_id,
        DATE_TRUNC('month', created_at) AS cohort_month
    FROM users
),
activity AS (
    SELECT
        user_id,
        DATE_TRUNC('month', event_date) AS activity_month
    FROM user_events
    WHERE event_type = 'active_session'
)
SELECT
    c.cohort_month,
    EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) AS months_since_signup,
    COUNT(DISTINCT a.user_id) AS active_users,
    COUNT(DISTINCT a.user_id)::FLOAT / COUNT(DISTINCT c.user_id) * 100 AS retention_rate
FROM cohorts c
LEFT JOIN activity a ON c.user_id = a.user_id
    AND a.activity_month >= c.cohort_month
GROUP BY c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month))
ORDER BY c.cohort_month, months_since_signup;

-- Customer Acquisition Cost (CAC)
SELECT
    DATE_TRUNC('month', acquired_date) AS month,
    SUM(marketing_spend) / NULLIF(COUNT(new_customers), 0) AS cac,
    SUM(marketing_spend) AS total_spend,
    COUNT(new_customers) AS customers_acquired
FROM (
    SELECT
        DATE_TRUNC('month', u.created_at) AS acquired_date,
        u.id AS new_customers,
        m.spend AS marketing_spend
    FROM users u
    JOIN marketing_spend m ON DATE_TRUNC('month', u.created_at) = m.month
    WHERE u.source = 'marketing'
) acquisition
GROUP BY DATE_TRUNC('month', acquired_date);

Python Dashboard Code (Streamlit)

import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

st.set_page_config(page_title="KPI Dashboard", layout="wide")

# Header with date filter
col1, col2 = st.columns([3, 1])
with col1:
    st.title("Executive Dashboard")
with col2:
    date_range = st.selectbox(
        "Period",
        ["Last 7 Days", "Last 30 Days", "Last Quarter", "YTD"]
    )

# KPI Cards
def metric_card(label, value, delta, prefix="", suffix=""):
    delta_color = "green" if delta >= 0 else "red"
    delta_arrow = "▲" if delta >= 0 else "▼"
    st.metric(
        label=label,
        value=f"{prefix}{value:,.0f}{suffix}",
        delta=f"{delta_arrow} {abs(delta):.1f}%"
    )

col1, col2, col3, col4 = st.columns(4)
with col1:
    metric_card("Revenue", 2400000, 12.5, prefix="$")
with col2:
    metric_card("Customers", 12450, 15.2)
with col3:
    metric_card("NPS Score", 72, 5.0)
with col4:
    metric_card("Churn Rate", 4.2, -0.8, suffix="%")

# Charts
col1, col2 = st.columns(2)

with col1:
    st.subheader("Revenue Trend")
    revenue_data = pd.DataFrame({
        'Month': pd.date_range('2024-01-01', periods=12, freq='M'),
        'Revenue': [180000, 195000, 210000, 225000, 240000, 255000,
                    270000, 285000, 300000, 315000, 330000, 345000]
    })
    fig = px.line(revenue_data, x='Month', y='Revenue',
                  line_shape='spline', markers=True)
    fig.update_layout(height=300)
    st.plotly_chart(fig, use_container_width=True)

with col2:
    st.subheader("Revenue by Product")
    product_data = pd.DataFrame({
        'Product': ['Enterprise', 'Professional', 'Starter', 'Other'],
        'Revenue': [45, 32, 18, 5]
    })
    fig = px.pie(product_data, values='Revenue', names='Product',
                 hole=0.4)
    fig.update_layout(height=300)
    st.plotly_chart(fig, use_container_width=True)

# Cohort Heatmap
st.subheader("Cohort Retention")
cohort_data = pd.DataFrame({
    'Cohort': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
    'M0': [100, 100, 100, 100, 100],
    'M1': [85, 87, 84, 86, 88],
    'M2': [78, 80, 76, 79, None],
    'M3': [72, 74, 70, None, None],
    'M4': [68, 70, None, None, None],
})
fig = go.Figure(data=go.Heatmap(
    z=cohort_data.iloc[:, 1:].values,
    x=['M0', 'M1', 'M2', 'M3', 'M4'],
    y=cohort_data['Cohort'],
    colorscale='Blues',
    text=cohort_data.iloc[:, 1:].values,
    texttemplate='%{text}%',
    textfont={"size": 12},
))
fig.update_layout(height=250)
st.plotly_chart(fig, use_container_width=True)

# Alerts Section
st.subheader("Alerts")
alerts = [
    {"level": "error", "message": "Churn rate exceeded threshold (>5%)"},
    {"level": "warning", "message": "Support ticket volume 20% above average"},
]
for alert in alerts:
    if alert["level"] == "error":
        st.error(f"🔴 {alert['message']}")
    elif alert["level"] == "warning":
        st.warning(f"🟡 {alert['message']}")

Best Practices

Do's

  • Limit to 5-7 KPIs - Focus on what matters
  • Show context - Comparisons, trends, targets
  • Use consistent colors - Red=bad, green=good
  • Enable drilldown - From summary to detail
  • Update appropriately - Match metric frequency

Don'ts

  • Don't show vanity metrics - Focus on actionable data
  • Don't overcrowd - White space aids comprehension
  • Don't use 3D charts - They distort perception
  • Don't hide methodology - Document calculations
  • Don't ignore mobile - Ensure responsive design

Resources