Risk Metrics Calculation
Comprehensive risk measurement toolkit for portfolio management, including Value at Risk, Expected Shortfall, and drawdown analysis.
When to Use This Skill
- Measuring portfolio risk
- Implementing risk limits
- Building risk dashboards
- Calculating risk-adjusted returns
- Setting position sizes
- Regulatory reporting
Core Concepts
1. Risk Metric Categories
| Category |
Metrics |
Use Case |
| Volatility |
Std Dev, Beta |
General risk |
| Tail Risk |
VaR, CVaR |
Extreme losses |
| Drawdown |
Max DD, Calmar |
Capital preservation |
| Risk-Adjusted |
Sharpe, Sortino |
Performance |
2. Time Horizons
Intraday: Minute/hourly VaR for day traders
Daily: Standard risk reporting
Weekly: Rebalancing decisions
Monthly: Performance attribution
Annual: Strategic allocation
Implementation
Pattern 1: Core Risk Metrics
import numpy as np
import pandas as pd
from scipy import stats
from typing import Dict, Optional, Tuple
class RiskMetrics:
"""Core risk metric calculations."""
def __init__(self, returns: pd.Series, rf_rate: float = 0.02):
"""
Args:
returns: Series of periodic returns
rf_rate: Annual risk-free rate
"""
self.returns = returns
self.rf_rate = rf_rate
self.ann_factor = 252 # Trading days per year
# Volatility Metrics
def volatility(self, annualized: bool = True) -> float:
"""Standard deviation of returns."""
vol = self.returns.std()
if annualized:
vol *= np.sqrt(self.ann_factor)
return vol
def downside_deviation(self, threshold: float = 0, annualized: bool = True) -> float:
"""Standard deviation of returns below threshold."""
downside = self.returns[self.returns < threshold]
if len(downside) == 0:
return 0.0
dd = downside.std()
if annualized:
dd *= np.sqrt(self.ann_factor)
return dd
def beta(self, market_returns: pd.Series) -> float:
"""Beta relative to market."""
aligned = pd.concat([self.returns, market_returns], axis=1).dropna()
if len(aligned) < 2:
return np.nan
cov = np.cov(aligned.iloc[:, 0], aligned.iloc[:, 1])
return cov[0, 1] / cov[1, 1] if cov[1, 1] != 0 else 0
# Value at Risk
def var_historical(self, confidence: float = 0.95) -> float:
"""Historical VaR at confidence level."""
return -np.percentile(self.returns, (1 - confidence) * 100)
def var_parametric(self, confidence: float = 0.95) -> float:
"""Parametric VaR assuming normal distribution."""
z_score = stats.norm.ppf(confidence)
return self.returns.mean() - z_score * self.returns.std()
def var_cornish_fisher(self, confidence: float = 0.95) -> float:
"""VaR with Cornish-Fisher expansion for non-normality."""
z = stats.norm.ppf(confidence)
s = stats.skew(self.returns) # Skewness
k = stats.kurtosis(self.returns) # Excess kurtosis
# Cornish-Fisher expansion
z_cf = (z + (z**2 - 1) * s / 6 +
(z**3 - 3*z) * k / 24 -
(2*z**3 - 5*z) * s**2 / 36)
return -(self.returns.mean() + z_cf * self.returns.std())
# Conditional VaR (Expected Shortfall)
def cvar(self, confidence: float = 0.95) -> float:
"""Expected Shortfall / CVaR / Average VaR."""
var = self.var_historical(confidence)
return -self.returns[self.returns <= -var].mean()
# Drawdown Analysis
def drawdowns(self) -> pd.Series:
"""Calculate drawdown series."""
cumulative = (1 + self.returns).cumprod()
running_max = cumulative.cummax()
return (cumulative - running_max) / running_max
def max_drawdown(self) -> float:
"""Maximum drawdown."""
return self.drawdowns().min()
def avg_drawdown(self) -> float:
"""Average drawdown."""
dd = self.drawdowns()
return dd[dd < 0].mean() if (dd < 0).any() else 0
def drawdown_duration(self) -> Dict[str, int]:
"""Drawdown duration statistics."""
dd = self.drawdowns()
in_drawdown = dd < 0
# Find drawdown periods
drawdown_starts = in_drawdown & ~in_drawdown.shift(1).fillna(False)
drawdown_ends = ~in_drawdown & in_drawdown.shift(1).fillna(False)
durations = []
current_duration = 0
for i in range(len(dd)):
if in_drawdown.iloc[i]:
current_duration += 1
elif current_duration > 0:
durations.append(current_duration)
current_duration = 0
if current_duration > 0:
durations.append(current_duration)
return {
"max_duration": max(durations) if durations else 0,
"avg_duration": np.mean(durations) if durations else 0,
"current_duration": current_duration
}
# Risk-Adjusted Returns
def sharpe_ratio(self) -> float:
"""Annualized Sharpe ratio."""
excess_return = self.returns.mean() * self.ann_factor - self.rf_rate
vol = self.volatility(annualized=True)
return excess_return / vol if vol > 0 else 0
def sortino_ratio(self) -> float:
"""Sortino ratio using downside deviation."""
excess_return = self.returns.mean() * self.ann_factor - self.rf_rate
dd = self.downside_deviation(threshold=0, annualized=True)
return excess_return / dd if dd > 0 else 0
def calmar_ratio(self) -> float:
"""Calmar ratio (return / max drawdown)."""
annual_return = (1 + self.returns).prod() ** (self.ann_factor / len(self.returns)) - 1
max_dd = abs(self.max_drawdown())
return annual_return / max_dd if max_dd > 0 else 0
def omega_ratio(self, threshold: float = 0) -> float:
"""Omega ratio."""
returns_above = self.returns[self.returns > threshold] - threshold
returns_below = threshold - self.returns[self.returns <= threshold]
if returns_below.sum() == 0:
return np.inf
return returns_above.sum() / returns_below.sum()
# Information Ratio
def information_ratio(self, benchmark_returns: pd.Series) -> float:
"""Information ratio vs benchmark."""
active_returns = self.returns - benchmark_returns
tracking_error = active_returns.std() * np.sqrt(self.ann_factor)
active_return = active_returns.mean() * self.ann_factor
return active_return / tracking_error if tracking_error > 0 else 0
# Summary
def summary(self) -> Dict[str, float]:
"""Generate comprehensive risk summary."""
dd_stats = self.drawdown_duration()
return {
# Returns
"total_return": (1 + self.returns).prod() - 1,
"annual_return": (1 + self.returns).prod() ** (self.ann_factor / len(self.returns)) - 1,
# Volatility
"annual_volatility": self.volatility(),
"downside_deviation": self.downside_deviation(),
# VaR & CVaR
"var_95_historical": self.var_historical(0.95),
"var_99_historical": self.var_historical(0.99),
"cvar_95": self.cvar(0.95),
# Drawdowns
"max_drawdown": self.max_drawdown(),
"avg_drawdown": self.avg_drawdown(),
"max_drawdown_duration": dd_stats["max_duration"],
# Risk-Adjusted
"sharpe_ratio": self.sharpe_ratio(),
"sortino_ratio": self.sortino_ratio(),
"calmar_ratio": self.calmar_ratio(),
"omega_ratio": self.omega_ratio(),
# Distribution
"skewness": stats.skew(self.returns),
"kurtosis": stats.kurtosis(self.returns),
}
Pattern 2: Portfolio Risk
class PortfolioRisk:
"""Portfolio-level risk calculations."""
def __init__(
self,
returns: pd.DataFrame,
weights: Optional[pd.Series] = None
):
"""
Args:
returns: DataFrame with asset returns (columns = assets)
weights: Portfolio weights (default: equal weight)
"""
self.returns = returns
self.weights = weights if weights is not None else \
pd.Series(1/len(returns.columns), index=returns.columns)
self.ann_factor = 252
def portfolio_return(self) -> float:
"""Weighted portfolio return."""
return (self.returns @ self.weights).mean() * self.ann_factor
def portfolio_volatility(self) -> float:
"""Portfolio volatility."""
cov_matrix = self.returns.cov() * self.ann_factor
port_var = self.weights @ cov_matrix @ self.weights
return np.sqrt(port_var)
def marginal_risk_contribution(self) -> pd.Series:
"""Marginal contribution to risk by asset."""
cov_matrix = self.returns.cov() * self.ann_factor
port_vol = self.portfolio_volatility()
# Marginal contribution
mrc = (cov_matrix @ self.weights) / port_vol
return mrc
def component_risk(self) -> pd.Series:
"""Component contribution to total risk."""
mrc = self.marginal_risk_contribution()
return self.weights * mrc
def risk_parity_weights(self, target_vol: float = None) -> pd.Series:
"""Calculate risk parity weights."""
from scipy.optimize import minimize
n = len(self.returns.columns)
cov_matrix = self.returns.cov() * self.ann_factor
def risk_budget_objective(weights):
port_vol = np.sqrt(weights @ cov_matrix @ weights)
mrc = (cov_matrix @ weights) / port_vol
rc = weights * mrc
target_rc = port_vol / n # Equal risk contribution
return np.sum((rc - target_rc) ** 2)
constraints = [
{"type": "eq", "fun": lambda w: np.sum(w) - 1}, # Weights sum to 1
]
bounds = [(0.01, 1.0) for _ in range(n)] # Min 1%, max 100%
x0 = np.array([1/n] * n)
result = minimize(
risk_budget_objective,
x0,
method="SLSQP",
bounds=bounds,
constraints=constraints
)
return pd.Series(result.x, index=self.returns.columns)
def correlation_matrix(self) -> pd.DataFrame:
"""Asset correlation matrix."""
return self.returns.corr()
def diversification_ratio(self) -> float:
"""Diversification ratio (higher = more diversified)."""
asset_vols = self.returns.std() * np.sqrt(self.ann_factor)
weighted_vol = (self.weights * asset_vols).sum()
port_vol = self.portfolio_volatility()
return weighted_vol / port_vol if port_vol > 0 else 1
def tracking_error(self, benchmark_returns: pd.Series) -> float:
"""Tracking error vs benchmark."""
port_returns = self.returns @ self.weights
active_returns = port_returns - benchmark_returns
return active_returns.std() * np.sqrt(self.ann_factor)
def conditional_correlation(
self,
threshold_percentile: float = 10
) -> pd.DataFrame:
"""Correlation during stress periods."""
port_returns = self.returns @ self.weights
threshold = np.percentile(port_returns, threshold_percentile)
stress_mask = port_returns <= threshold
return self.returns[stress_mask].corr()
Pattern 3: Rolling Risk Metrics
class RollingRiskMetrics:
"""Rolling window risk calculations."""
def __init__(self, returns: pd.Series, window: int = 63):
"""
Args:
returns: Return series
window: Rolling window size (default: 63 = ~3 months)
"""
self.returns = returns
self.window = window
def rolling_volatility(self, annualized: bool = True) -> pd.Series:
"""Rolling volatility."""
vol = self.returns.rolling(self.window).std()
if annualized:
vol *= np.sqrt(252)
return vol
def rolling_sharpe(self, rf_rate: float = 0.02) -> pd.Series:
"""Rolling Sharpe ratio."""
rolling_return = self.returns.rolling(self.window).mean() * 252
rolling_vol = self.rolling_volatility()
return (rolling_return - rf_rate) / rolling_vol
def rolling_var(self, confidence: float = 0.95) -> pd.Series:
"""Rolling historical VaR."""
return self.returns.rolling(self.window).apply(
lambda x: -np.percentile(x, (1 - confidence) * 100),
raw=True
)
def rolling_max_drawdown(self) -> pd.Series:
"""Rolling maximum drawdown."""
def max_dd(returns):
cumulative = (1 + returns).cumprod()
running_max = cumulative.cummax()
drawdowns = (cumulative - running_max) / running_max
return drawdowns.min()
return self.returns.rolling(self.window).apply(max_dd, raw=False)
def rolling_beta(self, market_returns: pd.Series) -> pd.Series:
"""Rolling beta vs market."""
def calc_beta(window_data):
port_ret = window_data.iloc[:, 0]
mkt_ret = window_data.iloc[:, 1]
cov = np.cov(port_ret, mkt_ret)
return cov[0, 1] / cov[1, 1] if cov[1, 1] != 0 else 0
combined = pd.concat([self.returns, market_returns], axis=1)
return combined.rolling(self.window).apply(
lambda x: calc_beta(x.to_frame()),
raw=False
).iloc[:, 0]
def volatility_regime(
self,
low_threshold: float = 0.10,
high_threshold: float = 0.20
) -> pd.Series:
"""Classify volatility regime."""
vol = self.rolling_volatility()
def classify(v):
if v < low_threshold:
return "low"
elif v > high_threshold:
return "high"
else:
return "normal"
return vol.apply(classify)
Pattern 4: Stress Testing
class StressTester:
"""Historical and hypothetical stress testing."""
# Historical crisis periods
HISTORICAL_SCENARIOS = {
"2008_financial_crisis": ("2008-09-01", "2009-03-31"),
"2020_covid_crash": ("2020-02-19", "2020-03-23"),
"2022_rate_hikes": ("2022-01-01", "2022-10-31"),
"dot_com_bust": ("2000-03-01", "2002-10-01"),
"flash_crash_2010": ("2010-05-06", "2010-05-06"),
}
def __init__(self, returns: pd.Series, weights: pd.Series = None):
self.returns = returns
self.weights = weights
def historical_stress_test(
self,
scenario_name: str,
historical_data: pd.DataFrame
) -> Dict[str, float]:
"""Test portfolio against historical crisis period."""
if scenario_name not in self.HISTORICAL_SCENARIOS:
raise ValueError(f"Unknown scenario: {scenario_name}")
start, end = self.HISTORICAL_SCENARIOS[scenario_name]
# Get returns during crisis
crisis_returns = historical_data.loc[start:end]
if self.weights is not None:
port_returns = (crisis_returns @ self.weights)
else:
port_returns = crisis_returns
total_return = (1 + port_returns).prod() - 1
max_dd = self._calculate_max_dd(port_returns)
worst_day = port_returns.min()
return {
"scenario": scenario_name,
"period": f"{start} to {end}",
"total_return": total_return,
"max_drawdown": max_dd,
"worst_day": worst_day,
"volatility": port_returns.std() * np.sqrt(252)
}
def hypothetical_stress_test(
self,
shocks: Dict[str, float]
) -> float:
"""
Test portfolio against hypothetical shocks.
Args:
shocks: Dict of {asset: shock_return}
"""
if self.weights is None:
raise ValueError("Weights required for hypothetical stress test")
total_impact = 0
for asset, shock in shocks.items():
if asset in self.weights.index:
total_impact += self.weights[asset] * shock
return total_impact
def monte_carlo_stress(
self,
n_simulations: int = 10000,
horizon_days: int = 21,
vol_multiplier: float = 2.0
) -> Dict[str, float]:
"""Monte Carlo stress test with elevated volatility."""
mean = self.returns.mean()
vol = self.returns.std() * vol_multiplier
simulations = np.random.normal(
mean,
vol,
(n_simulations, horizon_days)
)
total_returns = (1 + simulations).prod(axis=1) - 1
return {
"expected_loss": -total_returns.mean(),
"var_95": -np.percentile(total_returns, 5),
"var_99": -np.percentile(total_returns, 1),
"worst_case": -total_returns.min(),
"prob_10pct_loss": (total_returns < -0.10).mean()
}
def _calculate_max_dd(self, returns: pd.Series) -> float:
cumulative = (1 + returns).cumprod()
running_max = cumulative.cummax()
drawdowns = (cumulative - running_max) / running_max
return drawdowns.min()
Quick Reference
# Daily usage
metrics = RiskMetrics(returns)
print(f"Sharpe: {metrics.sharpe_ratio():.2f}")
print(f"Max DD: {metrics.max_drawdown():.2%}")
print(f"VaR 95%: {metrics.var_historical(0.95):.2%}")
# Full summary
summary = metrics.summary()
for metric, value in summary.items():
print(f"{metric}: {value:.4f}")
Best Practices
Do's
- Use multiple metrics - No single metric captures all risk
- Consider tail risk - VaR isn't enough, use CVaR
- Rolling analysis - Risk changes over time
- Stress test - Historical and hypothetical
- Document assumptions - Distribution, lookback, etc.
Don'ts
- Don't rely on VaR alone - Underestimates tail risk
- Don't assume normality - Returns are fat-tailed
- Don't ignore correlation - Increases in stress
- Don't use short lookbacks - Miss regime changes
- Don't forget transaction costs - Affects realized risk
Resources