Service Mesh Observability
Complete guide to observability patterns for Istio, Linkerd, and service mesh deployments.
When to Use This Skill
- Setting up distributed tracing across services
- Implementing service mesh metrics and dashboards
- Debugging latency and error issues
- Defining SLOs for service communication
- Visualizing service dependencies
- Troubleshooting mesh connectivity
Core Concepts
1. Three Pillars of Observability
┌─────────────────────────────────────────────────────┐
│ Observability │
├─────────────────┬─────────────────┬─────────────────┤
│ Metrics │ Traces │ Logs │
│ │ │ │
│ • Request rate │ • Span context │ • Access logs │
│ • Error rate │ • Latency │ • Error details │
│ • Latency P50 │ • Dependencies │ • Debug info │
│ • Saturation │ • Bottlenecks │ • Audit trail │
└─────────────────┴─────────────────┴─────────────────┘
2. Golden Signals for Mesh
| Signal |
Description |
Alert Threshold |
| Latency |
Request duration P50, P99 |
P99 > 500ms |
| Traffic |
Requests per second |
Anomaly detection |
| Errors |
5xx error rate |
> 1% |
| Saturation |
Resource utilization |
> 80% |
Templates
Template 1: Istio with Prometheus & Grafana
# Install Prometheus
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus
namespace: istio-system
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'istio-mesh'
kubernetes_sd_configs:
- role: endpoints
namespaces:
names:
- istio-system
relabel_configs:
- source_labels: [__meta_kubernetes_service_name]
action: keep
regex: istio-telemetry
---
# ServiceMonitor for Prometheus Operator
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: istio-mesh
namespace: istio-system
spec:
selector:
matchLabels:
app: istiod
endpoints:
- port: http-monitoring
interval: 15s
Template 2: Key Istio Metrics Queries
# Request rate by service
sum(rate(istio_requests_total{reporter="destination"}[5m])) by (destination_service_name)
# Error rate (5xx)
sum(rate(istio_requests_total{reporter="destination", response_code=~"5.."}[5m]))
/ sum(rate(istio_requests_total{reporter="destination"}[5m])) * 100
# P99 latency
histogram_quantile(0.99,
sum(rate(istio_request_duration_milliseconds_bucket{reporter="destination"}[5m]))
by (le, destination_service_name))
# TCP connections
sum(istio_tcp_connections_opened_total{reporter="destination"}) by (destination_service_name)
# Request size
histogram_quantile(0.99,
sum(rate(istio_request_bytes_bucket{reporter="destination"}[5m]))
by (le, destination_service_name))
Template 3: Jaeger Distributed Tracing
# Jaeger installation for Istio
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:
meshConfig:
enableTracing: true
defaultConfig:
tracing:
sampling: 100.0 # 100% in dev, lower in prod
zipkin:
address: jaeger-collector.istio-system:9411
---
# Jaeger deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: jaeger
namespace: istio-system
spec:
selector:
matchLabels:
app: jaeger
template:
metadata:
labels:
app: jaeger
spec:
containers:
- name: jaeger
image: jaegertracing/all-in-one:1.50
ports:
- containerPort: 5775 # UDP
- containerPort: 6831 # Thrift
- containerPort: 6832 # Thrift
- containerPort: 5778 # Config
- containerPort: 16686 # UI
- containerPort: 14268 # HTTP
- containerPort: 14250 # gRPC
- containerPort: 9411 # Zipkin
env:
- name: COLLECTOR_ZIPKIN_HOST_PORT
value: ":9411"
Template 4: Linkerd Viz Dashboard
# Install Linkerd viz extension
linkerd viz install | kubectl apply -f -
# Access dashboard
linkerd viz dashboard
# CLI commands for observability
# Top requests
linkerd viz top deploy/my-app
# Per-route metrics
linkerd viz routes deploy/my-app --to deploy/backend
# Live traffic inspection
linkerd viz tap deploy/my-app --to deploy/backend
# Service edges (dependencies)
linkerd viz edges deployment -n my-namespace
Template 5: Grafana Dashboard JSON
{
"dashboard": {
"title": "Service Mesh Overview",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "sum(rate(istio_requests_total{reporter=\"destination\"}[5m])) by (destination_service_name)",
"legendFormat": "{{destination_service_name}}"
}
]
},
{
"title": "Error Rate",
"type": "gauge",
"targets": [
{
"expr": "sum(rate(istio_requests_total{response_code=~\"5..\"}[5m])) / sum(rate(istio_requests_total[5m])) * 100"
}
],
"fieldConfig": {
"defaults": {
"thresholds": {
"steps": [
{"value": 0, "color": "green"},
{"value": 1, "color": "yellow"},
{"value": 5, "color": "red"}
]
}
}
}
},
{
"title": "P99 Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.99, sum(rate(istio_request_duration_milliseconds_bucket{reporter=\"destination\"}[5m])) by (le, destination_service_name))",
"legendFormat": "{{destination_service_name}}"
}
]
},
{
"title": "Service Topology",
"type": "nodeGraph",
"targets": [
{
"expr": "sum(rate(istio_requests_total{reporter=\"destination\"}[5m])) by (source_workload, destination_service_name)"
}
]
}
]
}
}
Template 6: Kiali Service Mesh Visualization
# Kiali installation
apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
name: kiali
namespace: istio-system
spec:
auth:
strategy: anonymous # or openid, token
deployment:
accessible_namespaces:
- "**"
external_services:
prometheus:
url: http://prometheus.istio-system:9090
tracing:
url: http://jaeger-query.istio-system:16686
grafana:
url: http://grafana.istio-system:3000
Template 7: OpenTelemetry Integration
# OpenTelemetry Collector for mesh
apiVersion: v1
kind: ConfigMap
metadata:
name: otel-collector-config
data:
config.yaml: |
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
zipkin:
endpoint: 0.0.0.0:9411
processors:
batch:
timeout: 10s
exporters:
jaeger:
endpoint: jaeger-collector:14250
tls:
insecure: true
prometheus:
endpoint: 0.0.0.0:8889
service:
pipelines:
traces:
receivers: [otlp, zipkin]
processors: [batch]
exporters: [jaeger]
metrics:
receivers: [otlp]
processors: [batch]
exporters: [prometheus]
---
# Istio Telemetry v2 with OTel
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
name: mesh-default
namespace: istio-system
spec:
tracing:
- providers:
- name: otel
randomSamplingPercentage: 10
Alerting Rules
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: mesh-alerts
namespace: istio-system
spec:
groups:
- name: mesh.rules
rules:
- alert: HighErrorRate
expr: |
sum(rate(istio_requests_total{response_code=~"5.."}[5m])) by (destination_service_name)
/ sum(rate(istio_requests_total[5m])) by (destination_service_name) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: "High error rate for {{ $labels.destination_service_name }}"
- alert: HighLatency
expr: |
histogram_quantile(0.99, sum(rate(istio_request_duration_milliseconds_bucket[5m]))
by (le, destination_service_name)) > 1000
for: 5m
labels:
severity: warning
annotations:
summary: "High P99 latency for {{ $labels.destination_service_name }}"
- alert: MeshCertExpiring
expr: |
(certmanager_certificate_expiration_timestamp_seconds - time()) / 86400 < 7
labels:
severity: warning
annotations:
summary: "Mesh certificate expiring in less than 7 days"
Best Practices
Do's
- Sample appropriately - 100% in dev, 1-10% in prod
- Use trace context - Propagate headers consistently
- Set up alerts - For golden signals
- Correlate metrics/traces - Use exemplars
- Retain strategically - Hot/cold storage tiers
Don'ts
- Don't over-sample - Storage costs add up
- Don't ignore cardinality - Limit label values
- Don't skip dashboards - Visualize dependencies
- Don't forget costs - Monitor observability costs
Resources