Apache Spark Optimization
Production patterns for optimizing Apache Spark jobs including partitioning strategies, memory management, shuffle optimization, and performance tuning.
When to Use This Skill
- Optimizing slow Spark jobs
- Tuning memory and executor configuration
- Implementing efficient partitioning strategies
- Debugging Spark performance issues
- Scaling Spark pipelines for large datasets
- Reducing shuffle and data skew
Core Concepts
1. Spark Execution Model
Driver Program
↓
Job (triggered by action)
↓
Stages (separated by shuffles)
↓
Tasks (one per partition)
2. Key Performance Factors
| Factor |
Impact |
Solution |
| Shuffle |
Network I/O, disk I/O |
Minimize wide transformations |
| Data Skew |
Uneven task duration |
Salting, broadcast joins |
| Serialization |
CPU overhead |
Use Kryo, columnar formats |
| Memory |
GC pressure, spills |
Tune executor memory |
| Partitions |
Parallelism |
Right-size partitions |
Quick Start
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
# Create optimized Spark session
spark = (SparkSession.builder
.appName("OptimizedJob")
.config("spark.sql.adaptive.enabled", "true")
.config("spark.sql.adaptive.coalescePartitions.enabled", "true")
.config("spark.sql.adaptive.skewJoin.enabled", "true")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.sql.shuffle.partitions", "200")
.getOrCreate())
# Read with optimized settings
df = (spark.read
.format("parquet")
.option("mergeSchema", "false")
.load("s3://bucket/data/"))
# Efficient transformations
result = (df
.filter(F.col("date") >= "2024-01-01")
.select("id", "amount", "category")
.groupBy("category")
.agg(F.sum("amount").alias("total")))
result.write.mode("overwrite").parquet("s3://bucket/output/")
Patterns
Pattern 1: Optimal Partitioning
# Calculate optimal partition count
def calculate_partitions(data_size_gb: float, partition_size_mb: int = 128) -> int:
"""
Optimal partition size: 128MB - 256MB
Too few: Under-utilization, memory pressure
Too many: Task scheduling overhead
"""
return max(int(data_size_gb * 1024 / partition_size_mb), 1)
# Repartition for even distribution
df_repartitioned = df.repartition(200, "partition_key")
# Coalesce to reduce partitions (no shuffle)
df_coalesced = df.coalesce(100)
# Partition pruning with predicate pushdown
df = (spark.read.parquet("s3://bucket/data/")
.filter(F.col("date") == "2024-01-01")) # Spark pushes this down
# Write with partitioning for future queries
(df.write
.partitionBy("year", "month", "day")
.mode("overwrite")
.parquet("s3://bucket/partitioned_output/"))
Pattern 2: Join Optimization
from pyspark.sql import functions as F
from pyspark.sql.types import *
# 1. Broadcast Join - Small table joins
# Best when: One side < 10MB (configurable)
small_df = spark.read.parquet("s3://bucket/small_table/") # < 10MB
large_df = spark.read.parquet("s3://bucket/large_table/") # TBs
# Explicit broadcast hint
result = large_df.join(
F.broadcast(small_df),
on="key",
how="left"
)
# 2. Sort-Merge Join - Default for large tables
# Requires shuffle, but handles any size
result = large_df1.join(large_df2, on="key", how="inner")
# 3. Bucket Join - Pre-sorted, no shuffle at join time
# Write bucketed tables
(df.write
.bucketBy(200, "customer_id")
.sortBy("customer_id")
.mode("overwrite")
.saveAsTable("bucketed_orders"))
# Join bucketed tables (no shuffle!)
orders = spark.table("bucketed_orders")
customers = spark.table("bucketed_customers") # Same bucket count
result = orders.join(customers, on="customer_id")
# 4. Skew Join Handling
# Enable AQE skew join optimization
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")
spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")
# Manual salting for severe skew
def salt_join(df_skewed, df_other, key_col, num_salts=10):
"""Add salt to distribute skewed keys"""
# Add salt to skewed side
df_salted = df_skewed.withColumn(
"salt",
(F.rand() * num_salts).cast("int")
).withColumn(
"salted_key",
F.concat(F.col(key_col), F.lit("_"), F.col("salt"))
)
# Explode other side with all salts
df_exploded = df_other.crossJoin(
spark.range(num_salts).withColumnRenamed("id", "salt")
).withColumn(
"salted_key",
F.concat(F.col(key_col), F.lit("_"), F.col("salt"))
)
# Join on salted key
return df_salted.join(df_exploded, on="salted_key", how="inner")
Pattern 3: Caching and Persistence
from pyspark import StorageLevel
# Cache when reusing DataFrame multiple times
df = spark.read.parquet("s3://bucket/data/")
df_filtered = df.filter(F.col("status") == "active")
# Cache in memory (MEMORY_AND_DISK is default)
df_filtered.cache()
# Or with specific storage level
df_filtered.persist(StorageLevel.MEMORY_AND_DISK_SER)
# Force materialization
df_filtered.count()
# Use in multiple actions
agg1 = df_filtered.groupBy("category").count()
agg2 = df_filtered.groupBy("region").sum("amount")
# Unpersist when done
df_filtered.unpersist()
# Storage levels explained:
# MEMORY_ONLY - Fast, but may not fit
# MEMORY_AND_DISK - Spills to disk if needed (recommended)
# MEMORY_ONLY_SER - Serialized, less memory, more CPU
# DISK_ONLY - When memory is tight
# OFF_HEAP - Tungsten off-heap memory
# Checkpoint for complex lineage
spark.sparkContext.setCheckpointDir("s3://bucket/checkpoints/")
df_complex = (df
.join(other_df, "key")
.groupBy("category")
.agg(F.sum("amount")))
df_complex.checkpoint() # Breaks lineage, materializes
Pattern 4: Memory Tuning
# Executor memory configuration
# spark-submit --executor-memory 8g --executor-cores 4
# Memory breakdown (8GB executor):
# - spark.memory.fraction = 0.6 (60% = 4.8GB for execution + storage)
# - spark.memory.storageFraction = 0.5 (50% of 4.8GB = 2.4GB for cache)
# - Remaining 2.4GB for execution (shuffles, joins, sorts)
# - 40% = 3.2GB for user data structures and internal metadata
spark = (SparkSession.builder
.config("spark.executor.memory", "8g")
.config("spark.executor.memoryOverhead", "2g") # For non-JVM memory
.config("spark.memory.fraction", "0.6")
.config("spark.memory.storageFraction", "0.5")
.config("spark.sql.shuffle.partitions", "200")
# For memory-intensive operations
.config("spark.sql.autoBroadcastJoinThreshold", "50MB")
# Prevent OOM on large shuffles
.config("spark.sql.files.maxPartitionBytes", "128MB")
.getOrCreate())
# Monitor memory usage
def print_memory_usage(spark):
"""Print current memory usage"""
sc = spark.sparkContext
for executor in sc._jsc.sc().getExecutorMemoryStatus().keySet().toArray():
mem_status = sc._jsc.sc().getExecutorMemoryStatus().get(executor)
total = mem_status._1() / (1024**3)
free = mem_status._2() / (1024**3)
print(f"{executor}: {total:.2f}GB total, {free:.2f}GB free")
Pattern 5: Shuffle Optimization
# Reduce shuffle data size
spark.conf.set("spark.sql.shuffle.partitions", "auto") # With AQE
spark.conf.set("spark.shuffle.compress", "true")
spark.conf.set("spark.shuffle.spill.compress", "true")
# Pre-aggregate before shuffle
df_optimized = (df
# Local aggregation first (combiner)
.groupBy("key", "partition_col")
.agg(F.sum("value").alias("partial_sum"))
# Then global aggregation
.groupBy("key")
.agg(F.sum("partial_sum").alias("total")))
# Avoid shuffle with map-side operations
# BAD: Shuffle for each distinct
distinct_count = df.select("category").distinct().count()
# GOOD: Approximate distinct (no shuffle)
approx_count = df.select(F.approx_count_distinct("category")).collect()[0][0]
# Use coalesce instead of repartition when reducing partitions
df_reduced = df.coalesce(10) # No shuffle
# Optimize shuffle with compression
spark.conf.set("spark.io.compression.codec", "lz4") # Fast compression
Pattern 6: Data Format Optimization
# Parquet optimizations
(df.write
.option("compression", "snappy") # Fast compression
.option("parquet.block.size", 128 * 1024 * 1024) # 128MB row groups
.parquet("s3://bucket/output/"))
# Column pruning - only read needed columns
df = (spark.read.parquet("s3://bucket/data/")
.select("id", "amount", "date")) # Spark only reads these columns
# Predicate pushdown - filter at storage level
df = (spark.read.parquet("s3://bucket/partitioned/year=2024/")
.filter(F.col("status") == "active")) # Pushed to Parquet reader
# Delta Lake optimizations
(df.write
.format("delta")
.option("optimizeWrite", "true") # Bin-packing
.option("autoCompact", "true") # Compact small files
.mode("overwrite")
.save("s3://bucket/delta_table/"))
# Z-ordering for multi-dimensional queries
spark.sql("""
OPTIMIZE delta.`s3://bucket/delta_table/`
ZORDER BY (customer_id, date)
""")
Pattern 7: Monitoring and Debugging
# Enable detailed metrics
spark.conf.set("spark.sql.codegen.wholeStage", "true")
spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true")
# Explain query plan
df.explain(mode="extended")
# Modes: simple, extended, codegen, cost, formatted
# Get physical plan statistics
df.explain(mode="cost")
# Monitor task metrics
def analyze_stage_metrics(spark):
"""Analyze recent stage metrics"""
status_tracker = spark.sparkContext.statusTracker()
for stage_id in status_tracker.getActiveStageIds():
stage_info = status_tracker.getStageInfo(stage_id)
print(f"Stage {stage_id}:")
print(f" Tasks: {stage_info.numTasks}")
print(f" Completed: {stage_info.numCompletedTasks}")
print(f" Failed: {stage_info.numFailedTasks}")
# Identify data skew
def check_partition_skew(df):
"""Check for partition skew"""
partition_counts = (df
.withColumn("partition_id", F.spark_partition_id())
.groupBy("partition_id")
.count()
.orderBy(F.desc("count")))
partition_counts.show(20)
stats = partition_counts.select(
F.min("count").alias("min"),
F.max("count").alias("max"),
F.avg("count").alias("avg"),
F.stddev("count").alias("stddev")
).collect()[0]
skew_ratio = stats["max"] / stats["avg"]
print(f"Skew ratio: {skew_ratio:.2f}x (>2x indicates skew)")
Configuration Cheat Sheet
# Production configuration template
spark_configs = {
# Adaptive Query Execution (AQE)
"spark.sql.adaptive.enabled": "true",
"spark.sql.adaptive.coalescePartitions.enabled": "true",
"spark.sql.adaptive.skewJoin.enabled": "true",
# Memory
"spark.executor.memory": "8g",
"spark.executor.memoryOverhead": "2g",
"spark.memory.fraction": "0.6",
"spark.memory.storageFraction": "0.5",
# Parallelism
"spark.sql.shuffle.partitions": "200",
"spark.default.parallelism": "200",
# Serialization
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.sql.execution.arrow.pyspark.enabled": "true",
# Compression
"spark.io.compression.codec": "lz4",
"spark.shuffle.compress": "true",
# Broadcast
"spark.sql.autoBroadcastJoinThreshold": "50MB",
# File handling
"spark.sql.files.maxPartitionBytes": "128MB",
"spark.sql.files.openCostInBytes": "4MB",
}
Best Practices
Do's
- Enable AQE - Adaptive query execution handles many issues
- Use Parquet/Delta - Columnar formats with compression
- Broadcast small tables - Avoid shuffle for small joins
- Monitor Spark UI - Check for skew, spills, GC
- Right-size partitions - 128MB - 256MB per partition
Don'ts
- Don't collect large data - Keep data distributed
- Don't use UDFs unnecessarily - Use built-in functions
- Don't over-cache - Memory is limited
- Don't ignore data skew - It dominates job time
- Don't use
.count() for existence - Use .take(1) or .isEmpty()
Resources